

Azure DevOps
Explained

Get started with Azure DevOps and develop your
DevOps practices

Sjoukje Zaal

Stefano Demiliani

Amit Malik

BIRMINGHAM—MUMBAI

Azure DevOps Explained
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have been
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha
Senior Editor: Shazeen Iqbal
Content Development Editor: Ronn Kurien
Technical Editor: Sarvesh Jaywant
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Joshua Misquitta

First published: December 2020
Production reference: 1101120

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-351-3

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	Get a free eBook or video every month

•	Fully searchable for easy access to vital information

•	Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

Contributors

About the authors
Sjoukje Zaal is a CTO, Microsoft Regional Director, and Microsoft Azure MVP with over
20 years of experience in architecture-, development-, consultancy-, and design-related
roles. She works at Capgemini, a global leader in consultancy, technology services, and
digital transformation.

She loves to share her knowledge and is active in the Microsoft community as a
co-founder of the user groups Tech Daily Chronicle, Global XR Community, and the
Mixed Reality User Group. She is also a board member of Azure Thursdays and Global
Azure. Sjoukje is an international speaker and is involved in organizing many events. She
has written several books and writes blogs.

Stefano Demiliani is a Microsoft MVP in business applications, an MCT, a Microsoft
Certified DevOps Engineer and Azure Architect, and a long-time expert on Microsoft
technologies. He works as a CTO for EID NAVLAB and his main activities are
architecting solutions with Azure and Dynamics 365 ERPs. He’s the author of many IT
books for Packt and a speaker at international conferences about Azure and Dynamics
365. You can reach him on Twitter or on LinkedIn or via his personal website.

I dedicate this book to my little daughter, Sara. In the past few months, I
have spent so much time away from you; I hope you can now appreciate the

work done and understand me.
Amit Malik is an IT enthusiast and technology evangelist focused on the cloud and
emerging technologies. He is currently employed by Spektra Systems as the director
of technology, where he helps Microsoft partners grow their cloud businesses by using
effective tools and strategies. He specializes in the cloud, DevOps, software-defined
infrastructure, application modernization, data platforms, and emerging technologies
around AI. Amit holds various industry-admired certifications from all major OEMs
in the cloud and data space, including Azure Solutions Architect Expert. He is also a
Microsoft Certified Trainer (MCT). Amit is an active community member of various
technology groups and is a regular speaker at industry conferences and events.

About the reviewers
Vassili Altynikov is the founder and a principal DevOps architect at Blend Master
Software.

With nearly two decades of software development, application architecture, and technical
consulting experience, he is helping organizations establish and improve their DevOps
practices to deliver better-quality software faster.

Abhishek Jaiswal is an Azure DevOps engineer with 6 years of experience in the IT
industry and professional certifications in Azure and AWS. He started his career as an
application support engineer and later moved to cloud technologies. Abhishek has domain
knowledge in the telecom and banking/finance sectors. Abhishek is passionate about
learning new technologies and upgrading his skills.

I would like to thank my parents and brothers for their support and
motivation.

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Table of Contents

Preface

Section 1: DevOps Principles and Azure
DevOps Project Management

1
Azure DevOps Overview

Introducing DevOps 4
Understanding DevOps principles 6
Principle 1 – Customer-centric action 6
Principle 2 – Create with the end in mind 6
Principle 3 – End-to-end responsibility 7
Principle 4 – Cross-functional
autonomous teams 7
Principle 5 – Continuous improvement 7
Principle 6 – Automate everything 7

Introducing Azure DevOps key
concepts 8
Plan 9
Develop 9
Deliver 9
Operate 9
Continuous integration and
continuous delivery
(CI/CD) 10
Agile development support 10
Version control 11
Infrastructure as Code 11

Configuration Management 12
Monitoring 12

Discovering Azure DevOps
services 12
Azure Boards 12
Azure Repos 13
Azure Pipelines 14
Azure Test Plans 15
Azure Artifacts 16
Extension Marketplace 17

Introducing the scenarios 18
Creating the starter project 19

Summary 21
Further reading 21

ii Table of Contents

2
 Managing Projects with Azure DevOps Boards

Technical requirements 24
Understanding processes and
process templates 24
Creating an organization 27
Creating a project 29
Creating and managing project
activities 31

Work Items 31
Backlogs 39
Boards 44
Sprints 45
Queries 48

Summary 50
Further reading 51

Section 2: Source Code and Builds

3
Source Control Management with Azure DevOps

Technical requirements 56
Understanding SCM 56
Exploring branching strategies 61
GitHub Flow 61
GitLab Flow 62
Git Flow 63

Handling source control with
Azure DevOps 64
Cloning a remote repository 68
Importing a GitHub repository into
Azure DevOps 72
Working with commits, pushes, and
branches 74

Protecting branches with policies 82
Cross-repo policies 88

Working with pull requests 90
Creating a pull request from the Azure
DevOps pull request page 92
Creating a pull request from a work item 92
Creating a pull request after pushing a
branch 93
Creating a pull request from Visual
Studio Code or Visual Studio 94

Handling a pull request 95
Tagging a release 99
Summary 101

4
Understanding Azure DevOps Pipelines

Technical requirements 104
Implementing a CI/CD process 104

Overview of Azure Pipelines 106
Understanding build agents 109

Table of Contents iii

Microsoft-hosted agents 110
Self-hosted agents 111
When to use a Microsoft-hosted or a
self-hosted agent 118

Overview of the YAML language 118
Scalars 119
Collections and lists 119
Dictionaries 120
Document structure 120
Complex object definition 120

Creating a build pipeline with
Azure DevOps 121

Pipeline definition with the classic
editor 124
YAML pipeline definition 135

Retention of builds 142
Multi-stage pipeline 144
Building a pipeline with GitHub
repositories 151
Executing jobs in parallel in an Azure
Pipeline 159
Agents on Azure Container Instances 162

Using container jobs in Azure
Pipelines 163
Summary 164

5
Running Quality Tests in a Build Pipeline

Technical requirements 166
Benefits of automatic testing 166
Introduction to unit testing 167
Running unit tests in a build
pipeline 168
Downloading the source code 168
Creating the pipeline 171

Introduction to code coverage
testing 179
Performing code coverage

testing 179
Assigning test results to work
items 182
Introduction to Feature Flags 184
Using Feature Flags to test in
production 185
Creating a new .NET Core application 185

Summary 189
Further reading 190

6
Hosting Your Own Azure Pipeline Agent

Technical requirements 192
Azure pipeline agent overview 193

Understanding the types of
agents in Azure Pipelines 194

iv Table of Contents

Microsoft-hosted agents 194
Self-hosted agents 194

Planning and setting up your
self-hosted Azure pipeline
agent 195
Choosing the right OS/image for the
agent VM 196
OS support and pre-requisites for
installing an Azure Pipelines agent 196
Creating a VM in Azure for your project 198
Setting up the build agent 200

Updating your Azure pipeline to
use self-hosted agents 210
Preparing your self-hosted agent to
build the Parts Unlimited project 211

Running the Azure pipeline 212

Using containers as self-hosted
agents 215
Setting up Windows containers as
Azure pipeline agents 215
Setting up Linux containers as Azure
Pipelines agents 217
Using Azure Container Instances as
agents 217
Environment variables 218
Planning for scale 219
Creating an Azure VM scale set 220
Setting up Azure pipeline agents with
VM scale set 223

Summary 225

Section 3: Artifacts and Deployments

7
Using Artifacts with Azure DevOps

Technical requirements 230
Introducing Azure Artifacts 230
Creating an artifact feed with
Azure Artifacts 231
Producing the package using a
build pipeline 232
Adding the sample project to the
PartsUnlimited repository 233
Creating the build pipeline 234

Publishing the package to the
feed from a build pipeline 238
Setting the required permissions on
the feed 238

Consuming the package in
Visual Studio from the Artifacts
feed 241
Scanning for package
vulnerabilities using
WhiteSource Bolt 246
Summary 251
Further reading 251

Table of Contents v

8
Deploying Applications with Azure DevOps

Technical requirements 254
An overview of release pipelines 254
Creating a release pipeline with
Azure DevOps 256
Creating the Azure DevOps release 261
Configuring the release pipeline
triggers for continuous deployment 265

Creating a multi-stage release
pipeline 268

Using approvals and gates for
managing deployments 272
Creating approvals 272
Using gates to check conditions 275
Using deployment groups 279

YAML release pipelines with
Azure DevOps 281
Summary 285

Section 4: Advanced Features of Azure
DevOps

9
Integrating Azure DevOps with GitHub

Technical requirements 289
An overview of Azure DevOps
and GitHub integration 292
Integrating Azure Pipelines with
GitHub 293
Setting up Azure Pipelines and GitHub
integration 293
Testing continuous integration 301
Adding a build Status badge 304

Integrating Azure Boards with
GitHub 307
Setting up Azure Boards and GitHub
integration 308
Adding an Azure Boards Status badge 311
Linking Azure Boards work items to
GitHub objects 313
Updating work items from GitHub 317

Overview of GitHub Actions 320
Summary 321

10
Using Test Plans with Azure DevOps

Technical requirements 324
Introduction to Azure Test Plans 324

Exploratory testing 324

vi Table of Contents

Installing and using the Test &
Feedback extension 325

Planned manual testing 330
Test plans, test suites, and test
cases 332
Managing test plans, test suites, and

test cases 333

Running and analyzing a
manual test plan 341
Summary 349
Further reading 349

11
Real-World CI/CD Scenarios with Azure DevOps

Technical requirements 351
Setting up a CI/CD pipeline for
.NET-based applications 352
Introduction to the sample application 352
Preparing the pre-requisite Azure
infrastructure 353
Setting up an Azure DevOps project 361

Setting up a CI/CD pipeline for a
container-based application 385
Introduction to the sample app 385

Setting up the required infrastructure 386
Setting up Azure Repos for the voting
application 389
Setting up the CI pipeline 389
Setting up the CD pipeline 393
Simulating an end-to-end CI/CD
experience 402

Azure Architecture Center for
DevOps 402
Summary 405

Other Books You May Enjoy
Index

Preface
DevOps has become a real buzzword in recent years. DevOps is a combination of cultural
philosophies, practices, and tools that increases an organization's ability to deliver
applications and services at high speed and with high quality. Azure DevOps is a Software
as a Service (SaaS) platform from Microsoft that provides an end-to-end set of tools for
developing and deploying software by applying DevOps techniques. This book starts with
an overview of the Azure DevOps platform before diving into various tools and features,
such as boards for project management, repos for source control management, build and
release pipelines, test plans, artifacts, and more.

After reading this book, you will have a complete and clear vision of what Azure DevOps
can offer you to improve your development life cycle.

Who this book is for
This book is for solution developers/architects and project managers who want to apply
DevOps techniques to their projects and use Azure DevOps to manage the entire process
of developing applications of quality.

What this book covers
Chapter 1, Azure DevOps Overview, gives you a full overview of the Azure DevOps
features and toolsets, such as boards, repos, pipelines, test plans, and artifacts.

Chapter 2, Managing Projects with Azure DevOps Boards, explains the project management
features of Azure DevOps in detail and shows you how to use boards and work items, how
to create sprints, and how to manage backlogs and track all your activities.

Chapter 3, Source Code Management with Azure DevOps, explains how you can handle
source control with the Azure DevOps Repos feature and Git. It shows you how to create
repositories, how to handle commits, pushes, and pulls, how to handle branches, and
more.

viii Preface

Chapter 4, Understanding Azure DevOps Pipelines, shows you how to create a build
pipeline for your code with Azure Pipelines and how best to handle continuous
integration.

Chapter 5, Running Quality Tests in a Build Pipeline, explains how to create and execute
quality tests for your code in a build pipeline.

Chapter 6, Hosting Your Own Azure Pipeline Agent, shows you how to create your own
build agents and use them in a build pipeline.

Chapter 7, Using Artifacts with Azure DevOps, explains how to use artifacts (package
feeds) to create and share packages and add fully integrated package management to your
continuous integration/continuous delivery pipelines.

Chapter 8, Deploying Applications with Azure DevOps, explains how to use release
pipelines to handle the continuous deployment of your code and how to use stages and
approvals before releasing code into a production environment.

Chapter 9, Integrating Azure DevOps with GitHub, shows you how to integrate Azure
DevOps tools with GitHub and use both applications for your continuous integration/
continuous delivery processes.

Chapter 10, Using Test Plans with Azure DevOps, shows you how to manage your project's
testing life cycle with test plans in Azure DevOps.

Chapter 11, Real-World CI/CD Scenarios with Azure DevOps, shows you some real-world
scenarios of continuous integration/continuous delivery processes being handled with
Azure DevOps.

To get the most out of this book
To follow the topics described in this book, you need to have a valid subscription with
Azure DevOps. You can activate a free account by going to the following link:

https://azure.microsoft.com/en-us/services/devops/

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you to avoid any potential errors related to the copying and pasting of
code.

https://azure.microsoft.com/en-us/services/devops/

Preface ix

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Learning-Azure-DevOps---B16392. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781800563513_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: 'You can download the file named node-v6.12.3-x64.msi and
install it using the interactive installer.'

A block of code is set as follows:

using System;

using PartsUnlimited.Models;

namespace AzureArtifacts

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine('Hello World!');

 CartItem caritem = new CartItem()

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781800563513_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781800563513_ColorImages.pdf

x Preface

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

[Net.ServicePointManager]::SecurityProtocol = [Net.
SecurityProtocolType]::Tls12

Install-Module AzureRM -AllowClobber

Any command-line input or output is written as follows:

docker run \

 -e VSTS_ACCOUNT=<name> \

 -e VSTS_TOKEN=<pat> \

 -it mcr.microsoft.com/azure-pipelines/vsts-agent

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
'Log in with your Microsoft account and in the left menu, select Artifacts.'

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Preface xi

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://packt.com

Section 1:
DevOps Principles
and Azure DevOps

Project Management

In this section, DevOps principles, Azure DevOps key concepts, and project management
will be covered.

This section contains the following chapters:

• Chapter 1, Azure DevOps Overview

• Chapter 2, Managing Projects with Azure DevOps Boards

1
Azure DevOps

Overview
This chapter introduces the first topics of this book: DevOps principles and Azure
DevOps project management. In this chapter, we are going start by introducing DevOps
and provide an overview of the different DevOps principles. Then, we are going to cover
the key concepts of Azure DevOps and the different services that Azure DevOps offers.
Finally, we are going to introduce the scenario that we will be using throughout this book.

The following topics will be covered in this chapter:

• Introducing DevOps

• Understanding DevOps principles

• Introducing Azure DevOps key concepts

• Discovering Azure DevOps services

• Introducing the scenarios

Let's get started!

4 Azure DevOps Overview

Introducing DevOps
For a long time, development and operations had been divided into isolated modules with
both separate concerns and responsibilities. Developers wrote the code and made sure that
it worked on their development systems, while the system administrators were responsible
for the actual deployment and integration in the organization's IT infrastructure.

As there was limited communication between these two isolated modules, both teams
worked mostly separated on their projects. However, they heavily depended on each
other because there was no cross-platform knowledge across the different teams.

This fitted in nicely with the Waterfall Methodology that was used for most projects.
The Waterfall Methodology is based on the Software Development Life Cycle (SDLC),
which has clearly defined processes for creating software. The Waterfall Methodology is a
breakdown of project deliverables into linear sequential phases, where each phase depends
on the deliverables of the previous phase. This sequence of events may look as follows:

Figure 1.1 – Waterfall Methodology

The Waterfall Methodology is well suited for projects in the following circumstances:

• Early in the development life cycle, customers and developers agree on what will be
delivered, with minimal to no changes during the development of the project.

• For integration with external systems, it is common for multiple components of the
software to be designed in parallel. In these cases, it is desirable to have the design
document complete at an early stage in the development life cycle.

• Various team members are involved in other projects simultaneously as well. For
example, business analysts can gather the requirements and create the design while
developers are working on another project.

• Where it is not possible to break down the requirements phase, customers are not
fully engaged in smaller deliverables.

Introducing DevOps 5

However, customers may not exactly know what their requirements are before they
see working software. This can result in changing the requirements, thus leading to
redesign, reimplementation, and reverification. This can dramatically increase the
costs of the project.

Due to this, Agile and DevOps were introduced in 2009 and have slowly taken over
the world of software development. They replaced the Waterfall Methodology for most
projects that are out there. DevOps is a natural extension of Agile and continuous
delivery approaches, and it stands for development and operations. It is a practice that
merges development, IT operations, and quality assurance into one single, continuous
set of processes.

The following diagram illustrates the different parts that DevOps consists of:

Figure 1.2 – DevOps methodology

It is a team-based and iterative approach to development where all stakeholders, such as
developers, administrators, testers, and a representative of the customer, are part of the
same team. Applications are delivered in functional components, and rather than creating
schedules and tasks at the start of the project, the project is divided into smaller phases,
called sprints. The duration of each sprint is defined up front and has a list of deliverables
that are planned at the start of each sprint. All those deliverables are defined together with
the customer and prioritized by business value by the customer. At the end of each sprint,
when work is completed, it is reviewed and evaluated by the team through daily builds
and end-of-sprint demos.

6 Azure DevOps Overview

This results in the following advantages:

• By working directly with the project team throughout the whole project,
the customer will experience a stronger sense of ownership.

• The customer has opportunities to see the work being delivered in an early stage
of the project and can make appropriate decisions and changes to it.

• Development is more business and value focused. This is a result of working closer
with the customer and having a better understanding of their needs.

• An Agile way of working enables us to quickly create a base version of the product,
which can be built upon in the next iterations.

Now that we have covered a very brief introduction to DevOps, we are going to look at the
different DevOps principles.

Understanding DevOps principles
There are a lot of different definitions when it comes to DevOps. Most of them are good
at explaining the different aspects of finding the right flow in delivering software and IT
projects. In the upcoming sections, we will highlight six DevOps principles that we think
are essential when adopting a DevOps way of working.

Principle 1 – Customer-centric action
Nowadays, it is important that software development projects have short cycles and
feedback loops, with end users and real customers integrated into the team. To fully
meet the customers' requirements, all activity around building software and products
must involve these clients. DevOps teams and organizations must continuously invest in
products and services that will allow clients to receive the maximum outcome, while also
being as lean as possible to continuously innovate and change the chosen strategy when
it is no longer working.

Principle 2 – Create with the end in mind
Organizations need to act more like product companies. They should focus more on
building working products that are sold to real customers. This engineering mindset needs
to be shared by all employees. This is required to realize those products. This means that
they should let go of the approach where each unit focuses on a particular role with their
own scoped responsibility.

Understanding DevOps principles 7

Principle 3 – End-to-end responsibility
In most traditional software development projects, the software and services that are
developed are handed over to operations, where they then deploy and maintain those
solutions after the initial development process. By adopting a DevOps way of working,
the DevOps teams become fully responsible and accountable for the project they deliver.
This means that once the product has been delivered by the team and it needs to be
maintained, it still remains under the responsibility of the team. The team will also
provide support for the product until it reaches its end of life. This greatly increases the
level of responsibility of the team and the quality of the products that are developed.

Principle 4 – Cross-functional autonomous teams
Organizations that work with vertical and fully responsible teams will need to let these
teams work completely independently throughout the whole life cycle. To enable these
teams to work completely independently, a broad and balanced set of skills are required.
Team members need to have T-shaped profiles instead of old-school IT specialists who
are only skilled in their own role. Examples of skills that every team member should have
include development, requirement analysis, testing, and administration skills.

Principle 5 – Continuous improvement
Another part of end-to-end responsibility is that, for organizations, it is important to
adapt changes continuously. There can be a number of changing circumstances, such
as new technology that has been released, changing customer requirements, and so on.
Continuous improvement is a strong focus in DevOps when it comes to optimizing for
speed and costs, minimizing waste, easy of delivery, and to continuously improve the
software and services that are being built and released. An important activity to embed
inside these cycles is experimentation. This will allow teams to develop a way of learning
from their failures, which is essential to continuous improvement.

Principle 6 – Automate everything
To fully adopt and embed a continuous improvement culture inside an organization,
most organizations have a lot of waste and tech depth to eliminate. To work with high
cycle rates and to process the instant feedback from customers and end users as soon as
possible, it is imperative to automate everything. This means that not only the software
development process should be automated using continuous delivery (which includes
continuous development and integration), but also the whole infrastructure landscape
needs to be automated. The infrastructure also needs to be ready for new ways of working.
In this sense, automation is synonymous with the drive to renew the way in which the
team delivers their services to their customers.

8 Azure DevOps Overview

In this section, we have covered the six principles that are very important when adopting
or migrating to a DevOps way of working. In the next few sections, we are going to look
at what Azure DevOps has to offer as a tool that supports teams so that they can work
in a DevOps oriented manner.

Introducing Azure DevOps key concepts
Azure DevOps provides a wide variety of services for DevOps teams so that they can plan,
work, collaborate on code development, and build and deploy software and services. Most
DevOps teams rely on several tools and build custom toolchains for each phase in the
application life cycle.

The following diagram shows the phases that are defined in the application life cycle:

Figure 1.3 – Application life cycle phases

In the following sections, we'll explain these phases and the corresponding Microsoft
tooling and products in more detail.

Introducing Azure DevOps key concepts 9

Plan
During the planning phase, teams can use Kanban boards and backlogs to define, track,
and lay out the work that needs to be done in Azure Boards. They can also use GitHub
for this. In GitHub, an issue can be created by suggesting a new idea or stating that a bug
should be tracked. These issues can be organized and assigned to teams.

Develop
The development phase is supported by Visual Studio Code and Visual Studio. Visual
Studio Code is a cross-platform editor, while Visual Studio is a Windows- and Mac-only
IDE. You can use Azure DevOps for automated testing and use Azure Pipelines to create
automatic builds for building the source code. Code can be shared across teams with
Azure DevOps or GitHub.

Deliver
The deliver phase is about deploying your applications and services to target
environments. You can use Azure Pipelines to deploy code automatically to any Azure
service or on-premises environments. You can use Azure Resource Manager templates or
Terraform to spin up environments for your applications or infrastructure components.
You can also integrate Jenkins and Spinnaker inside your Azure DevOps Pipelines.

Operate
In this phase, you implement full-stack monitoring for monitoring your applications and
services. You can also manage your cloud environment with different automation tools,
such as Azure Automation, Chef, and more. Keeping your applications and services secure
is also part of this phase. Therefore, you can use features and services such as Azure Policy
and Azure Security Center.

To support the full life cycle of analyzing, designing, building, deploying, and maintaining
software and infrastructure products and services, Azure DevOps provides integrated
features that can be accessed through any web browser.

Azure DevOps offers a combination of solutions and tooling that can be used to create
unique and custom workflows throughout each of the application life cycle phases.
These solutions will be described in the upcoming sections.

10 Azure DevOps Overview

Continuous integration and continuous delivery
(CI/CD)
You can automate each DevOps process with CI/CD (and continuous deployment) in
Azure DevOps. CI is used in the development phase of a project and refers to building
and testing code in a fully automated way. Every time you commit changes to the master
branch, the changes will be validated and then packaged into a build artifact automatically.
With CD, the delivery phase is automated. Every time a build artifact is available,
the artifact is automatically deployed to the desired environment. When continuous
integration and continuous deployment are both used by development teams, the code
remains ready for production at any time. The only thing that teams must do to deploy a
working application into production is trigger the transition from development to deploy.
This will make the automated build artifact available for deployment. This triggering can
be as simple as pressing a button.

With Azure DevOps, you also implement continuous deployment. Adding this to your
development life cycle means that you can automate the entire process, from code
commit to production. The trigger between the development and delivery phase is
completely automatic. So, when code changes are validated and pass all the tests that are
performed during the development phase, the changes will be published to production
automatically as well. This means that customers will receive the new version, along with
the improvements for it, as soon as they are available.

Agile development support
Azure DevOps supports teams that adopt Agile development methods with planning,
tracking, and reporting capabilities. This will result in shorter release cycles and full
visibility in the software development process. You can use Azure Boards, which will be
covered in more detail in the next section of this chapter, to manage backlogs and define,
assign, and track work items. You can also use advanced analytics and reporting and
create custom dashboards to track progress.

Introducing Azure DevOps key concepts 11

Version control
A version control system, also known as a source control system, is an essential tool for
multi-developer projects. It allows developers to collaborate on the code and track changes.
The history of all the code files is also maintained in the version control system. This makes
it easy to go back to a different version of the code files in case of errors or bugs.

Azure DevOps supports two different types of source control: Git (distributed) and
Team Foundation Version Control (TFVS). With Git, each developer has a copy of the
source repository on their development machine. All branch and history information is
included inside the source repository. Each developer works directly with their copy of
the repository and all the changes are shared between the local and source repositories
as a separate step. Changes can be committed on the local filesystem, and version control
operations can be executed without a network connection. Branches can be created easily
on the dev machine and later, they can be merged, published, or disposed by the developer
separately. With TFVC, developers have only one version of each file on their local dev
machines. All the others, as well as the historical data, are maintained only on the server.
The branches are created on the server as well.

Infrastructure as Code
Teams can also manage the infrastructure in Azure DevOps. Infrastructure components
that are used in a project, such as networks, virtual machines, and load balancers, can
be managed using the same versioning features and capabilities that are used for the
source code.

Used together with continuous delivery, an Infrastructure as Code (IaC) model generates
the same environment every time it is deployed. Without IaC, teams need to configure
and maintain the settings of all the individual deployment environments manually, which
is a time-consuming and error-prone task. The most plausible outcome is that, over time,
each environment becomes a snowflake, which is a unique configuration that cannot be
reproduced automatically anymore. This inconsistency across environments will lead
to issues during the deployment phase.

12 Azure DevOps Overview

Configuration Management
Configuration Management refers to all the items and artifacts that are relevant to the
project and the relationship between them. Those items are stored, retrieved, and uniquely
identified and modified. This includes items such as source code, files, and binaries. The
configuration management system is the one true source of configuration items.

Using Azure DevOps, resource configuration across the entire system can be managed by
teams to roll out configuration updates, enforce desired states, and automatically resolve
unexpected changes and issues. Azure offers multiple DevOps tools and capabilities for
configuration management, such as Chef, Puppet, Ansible, and Azure Automation.

Monitoring
You can use Azure Monitor to practice full-stack continuous monitoring. The health
of your infrastructure and applications can be integrated into existing dashboards
in Grafana, Kibana, and the Azure portal with Azure Monitor. You can also monitor
the availability, performance, and usage of your applications, whether they are hosted
on-premises or in Azure. Most popular languages and frameworks are supported by Azure
Monitor, such as NET, Java, and Node.js, and they are integrated with DevOps processes
and tools in Azure DevOps.

Discovering Azure DevOps services
In this section, we are going to introduce the different services that are offered by Azure
DevOps. These services can be used to support teams throughout the whole life cycle of
realizing business value for customers.

Azure Boards
Azure Boards can be used to plan, track, and discuss work across teams using the Agile
planning tools that are available. Using Azure Boards, teams can manage their software
projects. It also offers a unique set of capabilities, including native support for Scrum and
Kanban. You can also create customizable dashboards, and it offers integrated reporting
and integration with Microsoft Teams and Slack.

Discovering Azure DevOps services 13

You can create and track user stories, backlog items, tasks, features, and bugs that are
associated with the project using Azure Boards.

The following screenshot shows an example of an Azure Board:

Figure 1.4 – Azure Boards

Azure Repos
Azure Repos provides support for private Git repository hosting and for Team
Foundation Server Control (TFSC). It offers a set of version control tools that can be
used to manage the source code of every development project, large or small. When you
edit the code, you ask the source control system to create a snapshot of the files. This
snapshot is saved permanently so that it can be recalled later if needed.

Today, Git is the most used version control system among developers. Azure Repos
offers standard Git so that developers can use the tools and clients of their choice, such
as Git for Windows, Mac, third-party Git services, and tools such as Visual Studio and
Visual Studio Code.

14 Azure DevOps Overview

The following screenshot shows an example of the commits you can push to a repo
in Azure:

Figure 1.5 – Azure Repos

Azure Pipelines
You can use Azure Pipelines to automatically build, test, and deploy code to make it
available to other users and deploy it to different targets, such as a development, test,
acceptance, and production (DTAP) environment. It combines CI/CD to automatically
build and deploy your code.

Before you can use Azure Pipelines, you should put your code in a version control system,
such as Azure Repos. Azure Pipelines can integrate with a number of version control
systems, such as Azure Repos, Git, TFVS, GitHub, GitHub Enterprise, Subversion, and
Bitbucket Cloud. You can also use Pipelines with most application types, such as Java,
JavaScript, Node.js, Python, .NET, C++, Go, PHP, and XCode. Applications can be
deployed to multiple target environments, including container registries, virtual machines,
Azure services, or any on-premises or cloud target.

Discovering Azure DevOps services 15

The following screenshot shows an example of a run for an Azure Pipeline:

Figure 1.6 – Azure Pipelines

Azure Test Plans
With Azure Test Plans, teams can improve their code quality using planned and
exploratory services in Azure DevOps. Azure Test Plans offer features for planned manual
testing, exploratory testing, user acceptance testing, and for gathering feedback from
stakeholders. With manual testing, tests are organized into test plans and test suites by
testers and test leads. Teams can begin testing from their Kanban boards or from the Work
Hub directly. With user acceptance testing, the value that's delivered to meet customer
requirements is verified. This is usually done by designated testers. Exploratory testing
includes tests that are executed by the whole development team, including developers,
product owners, and testers. The software is tested by exploring the software systems,
without the use of test plans or test suites. Stakeholder feedback gathering is done outside
the development team by marketing or sales teams. Developers can request feedback
on their user stories and features from Azure DevOps. Stakeholders can then respond
directly to the feedback item.

16 Azure DevOps Overview

The following screenshot shows an example of an Azure Test Plan:

Figure 1.7 – Azure Test Plan

Azure Artifacts
With Azure Artifacts, you can create and share NuGet, npm, Python, and Maven
packages from private and public sources with teams in Azure DevOps. These packages
can be used in source code and can be made available to the CI/CD pipelines. With Azure
Artifacts, you can create multiple feeds that you can use to organize and control access
to the packages.

Discovering Azure DevOps services 17

The following screenshot shows an example of a feed in Azure Artifacts:

Figure 1.8 – Azure Artifacts

Extension Marketplace
You can download extensions for Azure DevOps from the Visual Studio Marketplace.
These extensions are simple add-ons that can be used to customize and extend your team's
experience with Azure DevOps. They can help by extending the planning and tracking of
work items, code testing and tracking, pipeline build and release flows, and collaboration
among team members. The extensions are created by Microsoft and the community.

18 Azure DevOps Overview

The following screenshot shows some of the extensions that can be downloaded from
the marketplace:

Figure 1.9 – Extension Marketplace

The services that we introduced in the previous sections will be explained more
thoroughly in the upcoming chapters of this book. In the next section, we will
introduce the scenarios that will be used throughout this book.

Introducing the scenarios
Throughout this book, we will use two different scenarios for our demos. We are going
to use sample projects that can be generated and installed in your Azure DevOps
environment by using the DevOps generator. For this book, we are going to install
Tailwind Traders and Parts Unlimited. Tailwind Traders is an example retail company
that showcases the future of intelligent application experiences, while Parts Unlimited
is an example e-commerce website.

Introducing the scenarios 19

Creating the starter project
To create the scenario project, we are going to use the Azure DevOps demo generator,
which will generate the sample project for us. These projects are free to use. Before you
generate the project, you need to install two different Azure DevOps extensions from the
marketplace, both of which are used by the Tailwind Traders project. These extensions
are as follows:

• ARM Outputs: This extension reads the output values of ARM deployments
and sets them as Azure Pipelines variables. You can download and install
the extension from https://marketplace.visualstudio.com/
items?itemName=keesschollaart.arm-outputs.

• Team Project Health: This extension enables users to visualize the overall health
of builds, thereby delivering a visual cue similar to Codify Build Light. You can
download the extension from https://marketplace.visualstudio.com/
items?itemName=ms-devlabs.TeamProjectHealth.

Once the extensions have been installed inside your Azure DevOps organization, you can
generate the sample project:

1. First, navigate to the following site: https://azuredevopsdemogenerator.
azurewebsites.net/.

2. Click the Sign in button. If you don't have an Azure account yet, you can sign up for
a trial account by clicking the Get started for free button:

Figure 1.10 – Azure DevOps demo generator

3. Name the project Tailwind Traders, select an organization, and select
a template by clicking the Choose template button. Select Tailwind Traders
from the list and click Select Template.

https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=keesschollaart.arm-outputs
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.TeamProjectHealth
https://marketplace.visualstudio.com/items?itemName=ms-devlabs.TeamProjectHealth
https://azuredevopsdemogenerator.azurewebsites.net/
https://azuredevopsdemogenerator.azurewebsites.net/

20 Azure DevOps Overview

4. After filling in these details, the page should look as follows:

Figure 1.11 – Creating a new project

5. Click the Create Project button.

6. With the project created, navigate to https://dev.azure.com/.

7. Log in with your credentials and select the organization where you created the
project. Select the Tailwind Traders project to see if anything has been generated.

8. Repeat these steps to create the Parts Unlimited project in your DevOps
environment.

https://dev.azure.com/

Summary 21

Tip
For more information about the Tailwind Traders sample project, refer
to the following site: https://github.com/Microsoft/
TailwindTraders. For more information about the Parts
Unlimited example, refer to https://microsoft.github.io/
PartsUnlimited/.

Summary
In this chapter, we covered some of the basics of DevOps and covered the six different
DevOps principles. Then, we covered the key concepts of Azure DevOps and the different
solutions that Azure DevOps has to offer to support teams throughout each of the
application life cycle phases. After that, we looked at the different features that Azure
DevOps has to offer, and we introduced and created the two scenarios that we will use
in the upcoming chapters of this book.

In the next chapter, we are going to cover how to manage projects with Azure Boards.

Further reading
Check out the following links for more information about the topics that were covered
in this chapter:

• Extension Marketplace: https://marketplace.visualstudio.com/
azuredevops

• Azure Automation documentation: https://docs.microsoft.com/en-us/
azure/automation/

• Azure DevOps demo generator: https://docs.microsoft.com/en-us/
azure/devops/demo-gen/use-demo-generator-v2?view=azure-
devops&viewFallbackFrom=vsts

• An overview of the Tailwind Traders reference apps for Azure: https://www.
youtube.com/watch?v=EP-PME-1tq0

https://github.com/Microsoft/TailwindTraders
https://github.com/Microsoft/TailwindTraders
https://microsoft.github.io/PartsUnlimited/
https://microsoft.github.io/PartsUnlimited/
https://marketplace.visualstudio.com/azuredevops
https://marketplace.visualstudio.com/azuredevops
https://docs.microsoft.com/en-us/azure/automation/
https://docs.microsoft.com/en-us/azure/automation/
https://docs.microsoft.com/en-us/azure/devops/demo-gen/use-demo-generator-v2?view=azure-devops&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/demo-gen/use-demo-generator-v2?view=azure-devops&viewFallbackFrom=vsts
https://docs.microsoft.com/en-us/azure/devops/demo-gen/use-demo-generator-v2?view=azure-devops&viewFallbackFrom=vsts
https://www.youtube.com/watch?v=EP-PME-1tq0
https://www.youtube.com/watch?v=EP-PME-1tq0

2
 Managing

Projects with Azure
DevOps Boards

In the previous chapter, we introduced DevOps and covered the six principles. We also
briefly covered the key concepts and the different services of Azure DevOps. Finally, we
introduced the scenarios that we will be using throughout this book.

In this chapter, we are going to cover Azure Boards in more detail. We will start with
the different processes and process templates that are available in Azure DevOps. Then,
we will create a new organization in Azure DevOps. We imported a sample project and
organization called Tailwind Traders in the previous chapter. We will use this example for
the rest of this chapter. We will use this Tailwind Traders project to create a new project
and learn how to create and manage the different project activities using Azure Boards.

The following topics will be covered in this chapter:

• Understanding processes and process templates

• Creating an organization

• Creating a project

• Creating and managing project activities

24 Managing Projects with Azure DevOps Boards

Technical requirements
To follow this chapter, you need to have an active Azure DevOps organization. The
organization that we'll be using in this chapter was created in Chapter 1, Azure DevOps
Overview.

Understanding processes and process
templates
With Azure Boards, you can manage the work of your software projects. Teams need
tools to support them that can grow and that are flexible. This includes native support
for Scrum and Kanban, as well as customizable dashboards and integrated reporting
capabilities and tools.

At the start of the project, teams must decide which process and process templates need
to be used to support the project model that is being used. The process and the templates
define the building blocks of the Work Item tracking system that is used in Azure Boards.

Azure DevOps supports the following processes:

• Basic: This is the simplest model that teams can choose. It uses Epics, Issues, and
Tasks to track the work. These artifacts are created when you create a new basic
project, as follows:

Figure 2.1 – Basic process

Understanding processes and process templates 25

• Agile: Choose Agile when your team uses the Agile planning process. You can track
different types of work, such as Features, User Stories, and Tasks. These artifacts
are created when you create a new project using the Agile process. Development
and test activities are tracked separately here, and Agile uses the Kanban board to
track User Stories and bugs. You can also track them on the task board:

Figure 2.2 – Agile process

26 Managing Projects with Azure DevOps Boards

• Scrum: When your team is practicing the Scrum methodology, choose the Scrum
process. This will create Product backlog items (PBIs), Tasks, Bugs, and more
artifacts for the team. You can track artifacts using the Kanban board, or break PBIs
and bugs down into tasks on the task board. The Scrum process is shown in the
following diagram:

Figure 2.3 – Scrum process

• CMMI: When your team follows a more formal project method that requires
a framework for process improvement and an auditable record of decisions,
the Capability Maturity Model Integration (CMMI) process is more suitable.
With this process template, you can track requirements and change requests,
risks, and reviews:

Creating an organization 27

Figure 2.4 – CMMI process

Now we have covered some basic information about the different processes and process
templates that are available in Azure DevOps, we will cover how to create a new
organization.

Creating an organization
An organization in Azure DevOps is used to connect groups of related projects. You can
plan and track your work here and collaborate with others when developing applications.
From the organization level, you can also integrate with other services, set permissions
accordingly, and set up continuous integration and deployment.

28 Managing Projects with Azure DevOps Boards

In the previous chapter, we introduced the scenarios that we will be using throughout
this book. Tailwind Traders is an example retail company that is showcasing the future of
intelligent application experiences. By generating a project using the DevOps generator,
the organization and the project were automatically created.

However, there are cases where you might need to create an organization manually, such
as when you first start to use Azure DevOps in an organization, or when it is a logical fit
to create a separate organization based on permission requirements. So, we are going to
cover this step as well. Therefore, you need to perform the following steps:

1. Open a web browser and navigate to https://dev.azure.com/.

2. Log in with your Microsoft account and from the left menu, click on New
organization:

 Figure 2.5 – Creating a new organization

3. In the wizard, give the organization a name, such as PacktLearnDevOps, and
choose the location where you want to host the project:

https://dev.azure.com/

Creating a project 29

Figure 2.6 – Naming the project

4. Click Continue.

With that, the organization has been created. In the next section, we are going to learn
how to add a new project to this organization.

Creating a project
After creating a new organization, Azure DevOps automatically gives you the ability to
create a new project. Perform the following steps:

1. The wizard for creating a project is automatically displayed once you've created a
new organization. There, you can specify the project's name. In my case, I named it
LearnDevOps.

30 Managing Projects with Azure DevOps Boards

2. You can also choose if you want your project to be Public, so that everyone on the
internet can view it, or Private. If you choose the latter, you need to give access to
users manually. We will choose Private for this demo:

Figure 2.7 – Creating a new project

3. Click + Create project to create the new project. It will be added to the organization
that we created in the previous step.

4. There is another way to create a new project. You can do this separately from
creating an organization as well. There will be a lot of cases where you'll want to add
a new project to an existing organization. For that, click on the organization's name
in the left menu. You will be redirected to the overview page of the organization.
There, in the top-right corner, click on + New project:

Creating and managing project activities 31

Figure 2.8 – Adding a new project to an existing organization

5. From there, the same wizard for creating a new project will be displayed.

We have now covered how to create a new organization and add a project to it. For the
remaining sections of this chapter, we are going to leave this organization and project
as-is, and we are going to use the Tailwind Traders project that we imported in Chapter 1,
Azure DevOps Overview.

In the next section, we will cover how to create and manage different project activities.

Creating and managing project activities
Azure DevOps offers different project features that can be used by teams to manage their
software development project, such as Work Items, backlogs, sprints, boards, and queries.
These will be covered in the following sections.

Work Items
Teams use artifact Work Items to track all the work for a team. Here, you will describe
what is needed for the software development project. You can track the features and the
requirements, the code defects or bugs, and all other items. The Work Items that are
available to you are based on the process that was chosen when the project was created.

Work Items have three different states: new, active, and closed. During the development
process, the team can update the items accordingly so that everyone has a complete
picture of the work related to the project.

Now, let's create a new Work Item.

32 Managing Projects with Azure DevOps Boards

Creating a new Work Item
From now on, we are going to use the Tailwind Traders sample project that we generated
in the previous chapter. We are going to create a new Work Item in this project. To do this,
perform the following steps:

1. Open a web browser and navigate to https://dev.azure.com/.

2. Log in with your credentials.

3. Navigate to the organization where the Tailwind Traders project was created and
select the project, as shown in the following screenshot:

Figure 2.9 – Selecting the Tailwind Traders project in Azure DevOps

https://dev.azure.com/

Creating and managing project activities 33

4. Next, from the left menu, select Boards and then Work items:

Figure 2.10 – Navigating to the Work Items

34 Managing Projects with Azure DevOps Boards

5. On the next screen, you will see an overview of all the Work Items that were
generated automatically when we created the Tailwind Traders project:

Figure 2.11 – Overview of all the sample Work Items

6. To create a new Work Item, click on + New Work Item from the top menu. There,
you will see the different types of Work Items that you can create according to the
project type that was selected during creation. In the case of Tailwind Traders, the
Agile type is used (see the Understanding processes and process templates section at
the beginning of this chapter for more details):

Creating and managing project activities 35

Figure 2.12 – Work Item types

Now, let's create a new User Story. To do so, click on User Story from the list. Now, follow
these steps:

1. A new window will open where you can specify the values for the User Story. Add
the following:

 a) Title: As a user, I want to edit my user profile.

 b) Assigned: Here, you can assign the Work Item to a specific person.

 c) Add tag: You can also add tags to this Work Item. These tags can be used for
searching later. I've added a tag called Profile Improvements.

 d) State: Because this is a newly created item, the state is automatically set to
New.

 e) Iteration: Here, you can specify which sprint you want to add this User Story
to. You can also do this later from the backlog. I've added it to iteration 2.

 f) Description: As a user, I want to edit my user profile. This is a rich text editor
where you can also format the description to your needs.

36 Managing Projects with Azure DevOps Boards

 g) Discussion: Here, you can add additional comments related to this Work
Item. You can link it to another Work Item using "#" followed by "the name of the
Work Item", link a particular pull request using "!" followed by the "name of the pull
request", or mention a person using "@" followed by the "name of the person".

 h) Priority: You can prioritize your User Story here. The priority here is just a
number to indicate the importance of the Work Item, not the priority of it. The
priority can be decided from the board by dragging the User Story up and down.

 i) Classification: You can also classify this item. The generator created two
different categories for the Tailwind Traders project. Here, you can select Business
or Architecture. In this case, the item is more business-related.

 j) Development: Here, you can link the item to a specific branch, build, pull
request, and so on.

 k) Story points: Using story points, you can estimate the amount of work
required to complete a User Story using any numeric unit of measurement. The
value in this field is based on the velocity of the team:

Figure 2.13 – Linking the item to a specific development process

Creating and managing project activities 37

2. Related Work: You can also link the item to other items or GitHub issues, such as
parent-child relationships, Tested By, Duplicate Of, and so on:

Figure 2.14 – Linking the item to related work

38 Managing Projects with Azure DevOps Boards

3. After filling in these fields, click the Save button at the top-right-hand side of the
screen:

Figure 2.15 – Saving your Work Item

We have now successfully created a new Work Item. I highly encourage you to create some
different Work Items, such as bugs, features, tasks, and so on. This way, you will become
familiar with the different types of forms that come with each.

Important Note
For more information on how to create the different Work Items, refer
to the following website: https://docs.microsoft.com/en-
us/azure/devops/boards/work-items/about-work-
items?view=azure-devops&tabs=agile-process.

For more information about the different fields that are used in the Work Item
forms, refer to this website: https://docs.microsoft.com/en-
us/azure/devops/boards/work-items/guidance/work-
item-field?view=azure-devops.

In the next section, we are going to look at backlogs and sprints in more detail.

https://docs.microsoft.com/en-us/azure/devops/boards/work-items/about-work-items?view=azure-devops&tabs=agile-process
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/about-work-items?view=azure-devops&tabs=agile-process
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/about-work-items?view=azure-devops&tabs=agile-process
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/work-item-field?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/work-item-field?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/work-item-field?view=azure-devops

Creating and managing project activities 39

Backlogs
The product backlog is a roadmap for what teams are planning to deliver. By adding
User Stories, requirements, or backlog items to it, you can get an overview of all the
functionality that needs to be developed for the project.

From the backlog, Work Items can be easily reordered, prioritized, and added to sprints.

Let's take a look at how backlog works:

1. In Azure DevOps, open the Tailwind Traders project again.

2. Next, from the left menu, select Boards and then Back log. Then, select Tailwind
Traders Team backlogs:

Figure 2.16 – Navigating to the backlog of the project

40 Managing Projects with Azure DevOps Boards

3. Here, you will see all the different User Stories for the project, including the one that
we created in the previous demo. From the top-right, you can select the different
types of Work Items that come with the project template:

Figure 2.17 – Different types of Work Items

4. For now, we will stick with the User Stories view. You can also reorder and prioritize
the Work Items from here. Let's reprioritize our newly created User Stories by
dragging it between numbers 2 and 3 in the list:

Creating and managing project activities 41

5. From the backlog, you can also add Work Items to the different sprints. During
creation of the Work Item, we added this User Story to Sprint 2. From here, we can
drag this item to a different sprint if we want to:

Figure 2.19 – Dragging the User Story to another sprint

42 Managing Projects with Azure DevOps Boards

6. You can also change the view to see more Work Items that are related to these User
Stories. By clicking on the view options shown on the left-hand side of screen, you
can enable different views. Enable Parent, which displays epics and features:

Figure 2.20 – Displaying the parent items

Creating and managing project activities 43

7. By dragging the different types of Work Items, you can also easily create different
types of parent-child relationships. For instance, you can drag our newly created
User Story to the Membership signup feature and create a relationship between
them:

Figure 2.21 – Creating a parent-child relationship

In this section, we covered the backlog and how to prioritize User Stories, as well as how
to add them to sprints. You can also create a view with a parent-child relationship based
on the different Work Items you have.

In the next section, we are going to look at Boards in more detail.

44 Managing Projects with Azure DevOps Boards

Boards
Another way to look at the different Work Items you have is by using boards. Each project
comes with a preconfigured Kanban board that can be used to manage and visualize the
flow of the work.

This board comes with different columns that represent different work stages. Here, you
can get a comprehensive overview of all the work that needs to be done and what the
current status of the Work Items is.

Let's look at Boards in Azure DevOps in more detail:

1. From the left menu, under Boards, select Boards. Here, you will see an overview of
the different Work Items that have been added to cards on the board, as shown in
the following screenshot:

Figure 2.22 – Overview of the Tailwind Traders board
The Work Items are displayed according to the status of the items. In the New
column, the items that the team has not committed to yet are displayed. Then,
there's items that are currently being picked up by the team. These are displayed in
the Active column.

Creating and managing project activities 45

There are also Work Items that are being Resolved, which means the development
part has finished but they still need to be tested. Items that have passed these tests
and meet the Definition of done are moved to the Closed column.

2. From here, you can also drag items to different columns, view the items in the
backlog, and make changes to them by clicking on the three (…) at the top-right of
the item, as follows:

Figure 2.23 – Interacting with the board

With that, we have provided an overview of what boards have to offer. In the next section,
we are going to look at sprints in more detail.

Sprints
According to the project template that is chosen, sprints can have a different name. In our
Tailwind Traders project, the Agile project template is being used. This changes the name
to Iterations. However, Azure DevOps treats these the same as Sprints.

Iterations or Sprints are used to divide the work into a specific number of (mostly) weeks.
This is based on the velocity that a team can handle; that is, the rate at which the team is
burning the User Stories.

46 Managing Projects with Azure DevOps Boards

Let's look at the Sprint View in Azure DevOps in more detail:

1. From the left menu, under Boards, select Sprints. By default, the backlog view will
be displayed. Here, you will see an overview of the User Stories again, except this
time for the current sprint, as shown in the following screenshot:

Figure 2.24 – An overview of the current sprint
You can also drag the User Stories to another sprint in here and reprioritize them
if needed.

Creating and managing project activities 47

2. By clicking on Taskboard from the top menu, you will see a different view of the
Work Items in the sprint, similar to what happens in Boards. This time, the items
that are in the current sprint are displayed at the backlog task level:

Figure 2.25 – Sprint in a Kanban board

48 Managing Projects with Azure DevOps Boards

3. From here, you can drag items to different columns, create new Work Items if
needed, and filter through the different sprints:

Figure 2.26 – Interacting with the Work Items in the sprint

The sprint board is mostly used by the team during daily standups. Items are dragged
to different lanes according to the progress that has been made by the team. The team
also briefly discusses these items and asks for help with executing or creating them when
needed. At the end of the sprint, most of the items will be moved to the Closed column.

In this demonstration, we looked at managing and creating project activities in Azure
Boards. In the next and last section of this chapter, we are going to look at queries in
Azure DevOps.

Queries
You can filter Work Items based on the filter criteria that you provide in Azure DevOps.
This way, you can easily get an overview of all the Work Items that are in a particular type,
state, or have a particular label. This can be done within a project, but also across different
projects.

To create different queries and search for Work Items, perform the following steps:

1. From the left menu, under Boards, select Queries. Then, from the top menu, select
+ New query:

Creating and managing project activities 49

Figure 2.27 – Creating a new query

2. Next, let's create a query that will be searching for a User Story with the tag Profile
Improvements. On the query screen, select the option shown in the following
screenshot:

Figure 2.28 – Creating a query

50 Managing Projects with Azure DevOps Boards

3. Then, click on Run query. The result will display the Work Item that we created in
the first step of this section:

Figure 2.29 – Search result

Important Note
This was a basic example of the search queries that you can create.
For more in-depth information, you can refer to https://docs.
microsoft.com/en-us/azure/devops/project/search/
overview?view=azure-devops.

With that, we have covered the basics of how to run a query to filter Work Items. This
concludes this chapter.

Summary
In this chapter, we covered Azure Boards in more depth. We started by looking at the
different project templates that you can choose from based on the methodology that your
organization embraces. Based on that project template, different Work Items are created
that can be used for planning the project. These Work Items can be added to backlogs and
relationships can be created for a logical view of the project items. They can also be added
to sprints.

In the next chapter, we are going to focus on source code management in Azure DevOps.

https://docs.microsoft.com/en-us/azure/devops/project/search/overview?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/project/search/overview?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/project/search/overview?view=azure-devops

Further reading 51

Further reading
Check out the following links for more information about the topics that were covered in
this chapter:

• What is Azure Boards?: https://docs.microsoft.com/en-us/azure/
devops/boards/get-started/what-is-azure-boards?view=azure-
devops&tabs=agile-process

• Choosing a process: https://docs.microsoft.com/en-us/azure/
devops/boards/work-items/guidance/choose-process

• Tracking work with User Stories, Issues, Bugs, Features, and Epics: https://
docs.microsoft.com/en-us/azure/devops/boards/work-items/
about-work-items?view=azure-devops&tabs=agile-process

• Creating your Product Backlog: https://docs.microsoft.com/
en-us/azure/devops/boards/backlogs/create-your-
backlog?view=azure-devops&tabs=agile-process

• How workflow states and state categories are used in Backlogs and Boards:
https://docs.microsoft.com/en-us/azure/devops/boards/
work-items/workflow-and-state-categories?view=azure-
devops&tabs=agile-process

https://docs.microsoft.com/en-us/azure/devops/boards/get-started/what-is-azure-boards?view=azure-devops&tabs=agile-process
https://docs.microsoft.com/en-us/azure/devops/boards/get-started/what-is-azure-boards?view=azure-devops&tabs=agile-process
https://docs.microsoft.com/en-us/azure/devops/boards/get-started/what-is-azure-boards?view=azure-devops&tabs=agile-process
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/about-work-items?view=azure-devops&tabs=agile-process
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/about-work-items?view=azure-devops&tabs=agile-process
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/about-work-items?view=azure-devops&tabs=agile-process
https://docs.microsoft.com/en-us/azure/devops/boards/backlogs/create-your-backlog?view=azure-devops&tabs=agile-process
https://docs.microsoft.com/en-us/azure/devops/boards/backlogs/create-your-backlog?view=azure-devops&tabs=agile-process
https://docs.microsoft.com/en-us/azure/devops/boards/backlogs/create-your-backlog?view=azure-devops&tabs=agile-process
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/workflow-and-state-categories?view=azure-devops&tabs=agile-process
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/workflow-and-state-categories?view=azure-devops&tabs=agile-process
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/workflow-and-state-categories?view=azure-devops&tabs=agile-process

Section 2:
Source Code

and Builds

In this section, Azure builds are covered as well as how to manage your source code in
Azure DevOps.

This section contains the following chapters:

•	Chapter 3, Source Code Management with Azure DevOps

•	Chapter 4, Understanding Azure DevOps Pipelines

•	Chapter 5, Running Quality Tests in a Build Pipeline

•	Chapter 6, Hosting Your Own Azure Pipeline Agent

3
Source Control

Management with
Azure DevOps

Source control management (SCM) is a vital part of every company that develops
software professionally, but also for every developer that wants to have a safe way to store
and manage their code.

When working in teams, it's absolutely necessary to have a safe central repository where
all your code is stored. It's also necessary to have a system that guarantees that the code
is safely shared between developers and that every modification is inspected and merged
without raising conflicts.

In this chapter, we'll learn how Azure DevOps can help with managing source code
professionally and securely. In this chapter, we'll cover the following topics:

• Understanding source control management

• Branching strategies overview

• Handling source control with Azure DevOps and Repos

• How to work with commits, pushes, and branches

56 Source Control Management with Azure DevOps

• Working with pull requests

• Handling a pull request

• How to tag a particular code release

By the end of this chapter, you will have learned about all the concepts you can use to
apply SCM techniques to your team using Azure DevOps.

Technical requirements
To follow this chapter, you need to have an active Azure DevOps organization and Visual
Studio or Visual Studio Code installed on your development machine.

Understanding SCM
Source control (or version control) is a software practice used to track and manage
changes in source code. This is an extremely important practice because it permits to
maintain a single source of code across different developers and helps with collaborating
on a single software project (where different developers works on the same code base).

SCM is an essential practice in any DevOps process. To adopt a source control policy, you
should do the following:

• Select a source control management system to adopt (for example, install Git on a
server or use a cloud-based SCM such as Azure DevOps Repos or GitHub)

• Store your code base in a repository managed by your source control
management system

• Clone the repository locally for development by taking the latest code version (pull)
stored in the central repository

• Commit and push your released code to the central repository

• Use different copies of the repository for developing in a parallel way (branches)

An SCM flow can be seen in the following diagram:

Understanding SCM 57

Figure 3.1 – Source control management flow

Git is absolutely one of the most popular SCM systems on the market. Git was created in
2005 by Linus Torvalds to aid in Linux kernel development. Git is free, open source, and
entirely file-based, so no additional software is required to handle SCM except the Git
engine itself.

Git has a workflow that can be summarized as follows (and that can be represented using
the previous diagram):

1. You create a repository for your project on your Git hosting system.

2. You copy (or clone) the repository to your local development machine.

3. You create a new file in your local repository and then you save the changes locally
(stage and commit).

4. You push the changes to the remote repository (push).

5. You pull the changes from the remote repository to the local one (to align your code
with the remote repository if other developers have made modifications).

6. You merge the changes with your local repository.

58 Source Control Management with Azure DevOps

When using Git as an SCM system, you need to memorize some key concepts:

• Snapshots are the way Git keeps track of your code history. A snapshot essentially
records what all your files look like at a given point in time. You decide when to take
a snapshot and of what files.

• Commit is the act of creating a snapshot. In a project, you create different commits.
A commit contains three sets of information:

-- Details on how the files has changed from the previous version

-- A reference to the parent commit (previously occurred commit)

-- A hash code name
• Repositories are collections of all the necessary files and their history. A repository

can be on a local machine or on a remote server.

• Cloning is the act of copying a repository from a remote server.

• Pulling is the process of downloading commits that don't exist on your machine
from a remote repository.

• Pushing is the process of adding your local changes to a remote repository.

• Branches are "versions" of your code base. All commits in Git live in a branch
and you can have different branches. The main branch in a project is known as
the master.

A Git flow is composed of the following actions:

Understanding SCM 59

Figure 3.2 – Git flow

Let's look at how a commit flow occurs with Git. To create a commit on Git, you make
some changes to your files and then you use the git add command to put these files into
the staging environment. After that, you use the git commit command to create a new
commit. This flow can be represented as follows:

Figure 3.3 – Git commit

60 Source Control Management with Azure DevOps

As an example, these are some Git commands you can use to activate the previously
described SCM process:

1. Clone a remote repository locally:

git clone https://github.com/user/yourRemoteRepo.git

2. Work on your project.

3. Save your work locally:

git add .

git commit -m "my commit message"

4. Check if there are any updates from the remote server:

git pull

5. Save your work to the remote server:

git push

To work with branches, follow these steps:

1. Create a new branch and switch to it:

git checkout -b "branch1"

2. Work on the new features.

3. Save your work locally:

git add .

git commit -m "update from branch1"

4. Save your work to the remote server:

git push

5. Switch to the branch where you want to merge your work:

git checkout master

6. Merge branch1 into the master branch and save it to the remote server:

git merge branch1

git push

Exploring branching strategies 61

Once you've mastered these commands, you'll be ready to start using Git. In the next
section, we'll provides an overview of branches and the possible branching strategies you
can use.

Exploring branching strategies
A branch is a version of your code stored in an SCM system. When using SCM with Git,
choosing the best branching strategy to adopt for your team is crucial because it helps you
have a reliable code base and fast delivery.

With SCM, if you're not using branching, you always have a single version of your code
(master branch) and you always commit to this branch:

Figure 3.4 – One flow

This "one flow" way of work is not recommended because it cannot guarantee that the
master branch is stable, especially if you have more than one developer working on the
same code.

There are different branching workflows (strategies) that you can adopt for your team, and
the recommendation that normally I suggest is to start simple. With Git, there are three
main branching strategies that you can adopt:

• GitHub Flow

• GitLab Flow

• Git Flow

In the following sections, we'll explore each of these strategies.

GitHub Flow
GitHub Flow is one of the most widely used branching strategies and is quite simple
to adopt.

62 Source Control Management with Azure DevOps

According to this workflow, you start from a master branch (which always contains
the deployable code). When you start developing a new feature, you create a new
branch and you commit regularly to this new branch. When the development work
has been completed, you create a pull request to merge the secondary branch with the
master branch:

Figure 3.5 – GitHub Flow

This workflow is simple to adopt and good if you need to maintain a single version of your
code in production. The only disadvantages are that you need to carefully check what you
commit to the master branch. This is not recommended if you need to have multiple
versions of your application in production.

GitLab Flow
GitLab Flow is another popular branching strategy that's widely used, especially when
you need to support multiple environments (such as production, staging, development,
and so on) in your SCM process. The following diagram represents this flow:

Figure 3.6 – GitLab Flow

Exploring branching strategies 63

According to this workflow, you should have at least three branches:

• Master: This is everyone's local version of the code.

• Staging: This is the branch where the master branch is branched into for
testing purposes.

• Production: This is the released production code (where staging is merged).

This is useful if you want to maintain a stable production release, work separately on new
features that can be moved to a testing environment (in order to be tested), and then
merge that environment into the production release when testing has been completed.

Git Flow
Git Flow is a workflow that's used when you have a scheduled release cycle. The following
diagram represents this flow:

Figure 3.7 – Git Flow

According to this workflow, you have a master branch and a develop branch that are
always live, and then some other branches that are not always live (can be deleted). The
master branch contains the released code, while the develop branch contains the code
that you're working on.

64 Source Control Management with Azure DevOps

Every time you add a new feature to your code base, you create a feature branch, starting
from the develop branch, and then you merge the feature branch into develop when the
implementation is finished. Here, you never merge into the master branch.

When you need to release a set of features, you create a release branch, starting from the
develop branch. Code in the release branch must be tested (maybe with bug fixes merged
in) and then when you're ready to release the code, you merge the release branch into the
master branch and then into the develop branch.

If a serious bug occurs in production, this flow says that you can create a fix branch from
the master, fix the bug, and then merge this branch into master again directly. You can
also merge it into the release branch if it's present, or into develop otherwise. If you have
merged the code into the release branch, the develop branch will have the fix when you
merge the release branch.

Handling source control with Azure DevOps
Azure DevOps supports the following source control management types:

• Git: This is a distributed version control system and is the default version control
provider in Azure DevOps when you create a new project.

• Team Foundation Version Control (TFVC): This is a centralized version control
system where developers have only one version of a file locally, data is stored on a
server, and branches are created on the server (path-based).

The first step when working with Azure DevOps is to create a new project inside your
organization. When you create a new project with Azure DevOps, you're prompted to
choose the version control system you want to use (shown in the red box in the following
screenshot):

Handling source control with Azure DevOps 65

Figure 3.8 – Create new project

By clicking the OK button, the new project will be created in your Azure DevOps
organization.

66 Source Control Management with Azure DevOps

Once the project has been provisioned, you can manage your repositories by going to the
Repos hub on the left bar in Azure DevOps (see the following screenshot). This is where
your files will be stored and where you can start creating repositories and managing
branches, pull requests, and so on:

Figure 3.9 – Repos

Handling source control with Azure DevOps 67

Starting from Repos, every developer can clone a repository locally and work directly
from Visual Studio or Visual Studio Code while being connected to Azure DevOps in
order to push code modifications, pull and create branches, make commits, and start pull
requests.

When you start a new project from scratch, Azure DevOps creates an empty repository
for you. You can load your code into this repository manually (via upload) or you can
clone from a remote repository (for example, GitHub) to Azure DevOps.

In a single project, you can create different repositories and each can have its own set of
permissions, branches, and commits. To create a new repository, just select the Repos hub
and click on New repository, as shown in the following screenshot:

Figure 3.10 – New repository

A repository can be renamed or deleted easily from Azure DevOps.

In this section, we learned how to create a new project in Azure DevOps and how to
create code repositories for your project.

In the next section, we'll learn how to manage a complete source code management flow
with Azure DevOps, from cloning a remote repository to committing code on it.

68 Source Control Management with Azure DevOps

Cloning a remote repository
To show you how to work with a code repository in Azure DevOps, I will start from a
project where I have my web application source code stored in a Git repository in Azure
DevOps. The following screenshot shows the code hosted remotely in the master branch:

Figure 3.11 – Master branch

Every developer that must work with this code has to clone this repository locally. To do
that, you can click on the Clone button, as shown in the following screenshot:

Figure 3.12 – Cloning the repository

Handling source control with Azure DevOps 69

From here, you'll see a window that shows you the clone repository's URL. You can clone
this repository by using the git clone <Repository URL> command or directly in
Visual Studio or Visual Studio Code by using one of the options shown in the following
screenshot:

Figure 3.13 – Cloning options

Here, I'm cloning the project to Visual Studio Code. Azure DevOps prompts me to select
a folder where I will save the project (local folder on your development machine), then
opens Visual Studio Code and starts cloning the remote repository:

Figure 3.14 – Cloning in Visual Studio Code

70 Source Control Management with Azure DevOps

In Visual Studio Code, you can also clone a repository by going to the Command Palette
(Ctrl + Shift + P), selecting the Git:Clone command, and then pasting the repository
URL into the URL window that will be prompted to you:

Figure 3.15 – The Git:Clone command

Once the cloning process has finished, you will have a local copy of the master branch of
the remote repository in the selected folder:

Figure 3.16 – Local copy of the remote repository

Handling source control with Azure DevOps 71

In order to work with remote repositories on Azure DevOps with Visual Studio Code
more efficiently, I recommend that you install an extension (from the Visual Studio Code
Marketplace) called Azure Repos:

Figure 3.17 – Azure Repos extension

Once Azure Repos has been installed, if you go to the Command Palette and search for
the word teams, you will see a new set of available commands to interact with in Azure
DevOps, as follows:

Figure 3.18 – Azure Repos commands

We'll use some of these commands later in this chapter.

In the next section, we'll learn how to import a GitHub repository into Azure DevOps.

72 Source Control Management with Azure DevOps

Importing a GitHub repository into Azure DevOps
With Azure DevOps, you can also import a GitHub repository inside Repos. If you select
an empty repository that you've created in an Azure DevOps project, you'll have the
option to import a repository, as shown in the following screenshot:

Figure 1.19 – Import a repository

Here, you can select the GitHub repository to import (by entering the source type and the
GitHub repository's cloning URL):

Figure 1.20 – Import a Git repository

Handling source control with Azure DevOps 73

When you click the Import button, the remote GitHub repository import process will
start and you will see an image showing its progress:

Figure 3.21 – Processing the import repository request

Once the import process has finished, you'll have the code available in Azure Repos.
Please remember that when importing a repository from GitHub, the history and revision
information is also imported into Azure DevOps for complete traceability:

Figure 3.22 – History of the imported repository

74 Source Control Management with Azure DevOps

Working with commits, pushes, and branches
Once you've cloned the remote repository to your local Git repository, you can start
coding (create new files or modify new files).

Every time you create or change a file, Git records the changes in the local repository.
You'll see the Visual Studio Code source control icon start signaling that a file has been
modified. In the following screenshot, for example, I've added a comment to a file in my
project. After saving this file, the Git engine says that I have an uncommitted file:

Figure 3.23 – Uncommitted file alert

If you click on the Source Control icon in the left bar, you will see the uncommitted
file. From here, you can select the changes that you want to commit and stage them.
Every commit is done locally. You can stage a modification by clicking the + icon and
then perform a commit of all your staged files by clicking the Commit button in the top
toolbar. Every commit must have a message that explains the reason for this commit:

Handling source control with Azure DevOps 75

Figure 3.24 – Commit message

Now, the files are locally committed into your local master branch (although it's
not recommended to do this, as explained later). To sync these modifications to the
online repository in Azure DevOps, you can click the Synchronize Changes button
on the bottom bar in Visual Studio Code (this visually indicates that you have some
modifications that must be pushed online), as highlighted in red in the following
screenshot:

Figure 3.25 – Modifications to be pushed online

Alternatively, you can select the Git : push command from the command bar,
as follows:

Figure 3.26 – The Git:Push command

76 Source Control Management with Azure DevOps

Now, all the code modifications have been pushed online to the master branch. If you go
to Azure DevOps in the Repos hub and select the Commits menu, you will see the history
of every commit for the selected branch:

Figure 3.27 – Commit history

In this way, we're directly working on the master branch. This is not how you work in
a real team of developers because if every developer commits directly to the master
branch, you cannot guarantee that this branch will be always stable. The best way to work
is by using the previously explained GitHub Flow. So, you should create a new branch,
work on this newly created branch, and only when the work is finished should you create
a pull request to merge your branch to the master branch.

Handling source control with Azure DevOps 77

You can create a new branch in Azure DevOps or directly from Visual Studio Code. To
create a new branch, follow these steps:

1. From Azure DevOps, select Branches and then click on New branch:

Figure 3.28 – New branch

2. Then, provide a branch name. You need to select the branch that your new branch
will be created from, as shown in the following screenshot:

Figure 3.29 – Create a branch

78 Source Control Management with Azure DevOps

To create a new branch directly from Visual Studio Code, just click on the branch
name on the bottom bar and select Create new branch…:

Figure 3.30 – Create new branch… option in Visual Studio Code

3. Now, select the name for the new branch (here, it's called development):

Figure 1.31 – Assigning a branch name
With that, the branch will be created in your local repository and Visual Studio
Code will automatically start working on it:

Figure 3.32 – Working on the new branch

Handling source control with Azure DevOps 79

4. Now, you can work on your code (maybe for developing a new set of features) and
make commits on this new branch without affecting the master branch (it will
continue to have the actually released version of your code base).

As an example, here, I have added a new modification to the
MedicineController.cs file. I can stage and commit the modification on the
development branch locally:

Figure 3.33 – Staging changes

80 Source Control Management with Azure DevOps

5. Then, I can push these modifications to the remote repository on Azure DevOps.
When pushed online, if this is the first time the development branch is being
created, you will receive a message that looks as follows:

Figure 3.34 – Automatic branch creation and publishing

6. When finished, the development branch will be created on the remote repository
and your code will be pushed online:

Figure 3.35 – Branch created on the remote repository

7. If you go to the Commits section in the Repos hub in Azure DevOps, you will see
the history of your commits. By selecting a specific commit, you can view the file
changes that were made (by comparing the previous version to the current version
after the specific commit):

Handling source control with Azure DevOps 81

Figure 3.36 – Details of a commit
This action can also be done directly from Visual Studio Code with the Azure
Repos extension by using the Team:View History command:

Figure 3.37 – The Team:View History command from Visual Studio Code

82 Source Control Management with Azure DevOps

A branch can be deleted (manually or automatically after a pull request), restored from
accidental deletion, and also be locked (in order to be placed in a read-only state or
to avoid new commits on this branch affecting a merging that is in place). To lock a
particular branch, just select the branch from Azure DevOps and then, from the menu,
select the Lock option:

Figure 3.38 – Locking a branch

To unlock a locked branch, just select the Unlock action. It's important to note that
locking a branch does not prevent cloning or fetching this branch locally.

Protecting branches with policies
When working with different developers and when using branches, it is extremely
important to protect the critical branches you have in your repository (such as the
master branch) with rules that can guarantee that the branch will always be in a
healthy state.

For this scope, Azure DevOps permits you to specify a set of policies for your
critical branches.

Handling source control with Azure DevOps 83

Branch policies in Azure DevOps permit you to do the following:

• Limit the contributors to a specific branch

• Specify who can create branches

• Specify a set of naming conventions for branches

• Automatically include code reviewers for every code change in the branch

• Enforce the use of pull requests

• Start a build pipeline before committing the code to the branch

To specify the branch policies for a particular branch, go to the Branch section in Azure
DevOps, select your branch, and then select the Branch policies menu:

Figure 3.39 – Branch policies

Here, you have a set of options that you can set to control your selected branch. We'll look
at each of these options in detail in the following sections.

84 Source Control Management with Azure DevOps

Require a minimum number of reviewers
This option allows you to specify the number of reviewers that can approve a code
modification. If any reviewer rejects the code changes, the modifications are not approved,
and the code changes are discarded. If you select Allow completion even if some
reviewers vote to wait or reject, then the pull request can be completed. The Requestors
can approve their own changes option enables the creator of a pull request to approve its
own code changes:

Figure 3.40 – Require a minimum number of reviewers option

Check for linked work items
This option allows you to require the associations of work items to a specific pull request
for the complete traceability of activities and tasks. This is useful if you're using the project
planning features (as shown in Chapter 2, Managing Projects with Azure DevOps Boards,
of this book):

Figure 3.41 – Check for linked work items option

Check for comment resolution
This option allows you to specify a rule where all comments must be resolved so that the
pull request can be performed:

Handling source control with Azure DevOps 85

Figure 3.42 – Check for comment resolution option

Limit merge types
This option allows you to enforce a branch strategy when a pull request is completed. The
available options are as follows:

• Basic merge (no fast-forward): This option merges the commit history of the
source branch and creates a merge commit in the target branch. The complete
non-linear history of commits that occurs during development is preserved.

• Squash merge: This creates a single commit in the target branch by compressing the
source branch commits (linear history).

• Rebase and fast-forward: A rebase allows the integration of a pull request branch
into the master branch. Each commit on the pull request is merged into the target
branch individually (linear history).

• Rebase with merge commit: This creates a semi-linear history by replacing the
source branch commits in the target branch and then creating a merge commit.

All these options can be seen in the following screenshot:

Figure 3.43 – Limit merge types option

86 Source Control Management with Azure DevOps

Build validation
This section allows you to specify a set of rules for building your code before the pull
request can be completed (useful for catching problems early). Upon clicking Add build
policy, a new panel appears:

Figure 3.44 – Add build policy

Here, you can specify what build pipeline definition you wish to apply and if it must be
triggered automatically when the branch is updated or manually. We'll talk about build
pipelines in detail in Chapter 4, Understanding Azure DevOps Pipelines.

Handling source control with Azure DevOps 87

Require approval from additional services
This option allows you to connect external services (via Azure DevOps pull request APIs)
in order to participate in the pull request flow:

Figure 3.45 – Add status policy

88 Source Control Management with Azure DevOps

Automatically include code reviewers
This policy allows you to include specific users or groups in the code review process:

Figure 3.46 – Add automatic reviewers

Cross-repo policies
Instead of defining a policy for each branch you create manually, Azure DevOps allows
you to define cross-repository policies (which will be automatically applied to all the
branches that you create for your project).

To define a policy that will be valid for each repository you'll create, you need to go
to Project settings and then select Cross-repo policies, as shown in the following
screenshot:

Handling source control with Azure DevOps 89

Figure 3.47 – Cross-repo policies

From here, you can add a branch protection policy and select one of these options:

• Protect the default branch of each repository (for example, the master branch of
each repo).

• Protect current and future branches matching a specified pattern. Here, you
can define a pattern for filtering branches and the policy will be applied to all the
branches that apply to this pattern.

90 Source Control Management with Azure DevOps

As an example, if you want to define a policy that will be automatically applied to all the
branches you create for your project, do the following:

Figure 3.48 – Add branch protection

As you can see, here, we have selected the * key as a pattern to identify all the branches in
our project.

Working with pull requests
Pull requests allow you to notify your team members that a new implementation has
been completed and must be merged with a specified branch. By using pull requests,
members of your team can review your code (by stepping through files and see the
modifications that a particular commit introduces), provide review comments on minor
issues, and approve or reject those modifications. This is the recommended practice to use
when using source control management with Azure DevOps.

You can view the incoming pull requests for a specific repository on Azure DevOps
by selecting the Pull requests menu from the Repos hub, as shown in the following
screenshot:

Working with pull requests 91

Figure 3.49 – Pull requests view

You can also filter this list to view only your pull requests or only the Active, Completed,
or Abandoned pull requests.

A pull request can be created in different ways, as follows:

• Manually from the Azure DevOps pull request page

• From a work item linked to a branch (the Development tab)

• When you push an update to a feature branch

• From Visual Studio Code or Visual Studio directly

• From the Azure DevOps Services CLI

In the following sections, we'll learn how to start pull requests in each of these situations.

92 Source Control Management with Azure DevOps

Creating a pull request from the Azure DevOps pull
request page
You can create a new pull request directly from the Azure DevOps Pull requests menu (in
the Repos hub). From here, just click on the New pull request button:

Figure 3.50 – New pull request

You can now enter details about the pull request you wish to create (we'll look at this later
in this chapter).

Creating a pull request from a work item
From the Backlogs view of your team's work items, you can select a work item with
a linked branch (a work item with a commit associated with a branch), go to the
Development area of the selected work item, and create a Create pull request action:

Working with pull requests 93

Figure 3.51 – Creating a pull request from a work item

Creating a pull request after pushing a branch
When you commit code to a development (secondary) branch to Azure DevOps, you're
automatically prompted to create a pull request (you can see this prompt by going to the
Files or Pull requests menu in the Repos hub). As you may recall, I previously committed
a new code into a branch called development to Azure DevOps. Now, if we go to the
Files | History section, we will see that there's a prompt for creating a new pull request:

Figure 3.52 – Creating a pull request after a commit on a branch

94 Source Control Management with Azure DevOps

Creating a pull request from Visual Studio Code or
Visual Studio
You can start a pull request directly from Visual Studio Code or Visual Studio from where
your project has been loaded.

To start a pull request from Visual Studio Code, launch the Team:Create pull
request command from the Command Palette (Ctrl + Shift + P):

Figure 3.53 – Creating a pull request from Visual Studio Code

This will prompt you to open Azure DevOps. After confirming this, the pull request
window will open.

From Visual Studio, select the Team Explorer panel. From here, you can click on Pull
Requests to start a pull request:

Figure 3.54 – Creating a pull request from Visual Studio

Handling a pull request 95

Handling a pull request
All the different ways to handle a pull request that we've described converge to a unique
point: in Azure DevOps, the Pull requests window opens, and you need to fill in the
details of your pull request activity. As an example, this is the pull request that we started
after the previous commit on the development branch:

Figure 3.55 – New pull request window

Here, you can immediately see that the pull request merges a branch into another
branch (in my case, development will be merged into master). You need to provide a
title and a description of this pull request (that clearly describes the changes and the
implementations you made in the merge), as well as attach links and add team members
(users or groups) that will be responsible for reviewing this pull request. You can also
include work items (this option will be automatically included if you completed a commit
attached to a work item previously).

96 Source Control Management with Azure DevOps

In the Files section, you can see what this pull request will do in the destination branch
(for every file). As an example, this is what my pull request shows me:

Figure 3.56 – Code modifications view in a pull request

On the left, you can see that the file committed in the master branch, while on the
right, you can see the same file after the merging phase (with the details of every
modification applied).

If you've specified some reviewers, they will see the details of the code modifications,
which means they can add comments and interact with the developers.

To create the pull request process, simply click the Create button.

Once the pull request has been created, you can complete the pull request by clicking on
the Complete button in the top-right corner of the pull request window (you can do this
after the optional approval phase and after passing the branch rules):

Figure 3.57 – Completing a pull request

Handling a pull request 97

From here, you can do the following:

• Complete the pull request.

• Mark as draft: This is like a "work in progress". If a pull request is marked as a draft,
required reviewers are not automatically added, voting is not permitted, and build
policies (if activated) are not automatically executed.

• Abandon: The pull request will be closed, and your code will not be merged.

When you click on Complete, you'll be prompted to fill in the Complete pull request
window, which looks as follows:

Figure 3.58 – Complete pull request

Here, you can insert a title and a description for the merge operation, select the merge
type to apply, and select the post-completion operation to apply (if the associated work
items should be marked as completed after merging and if the source branch must be
deleted after the merge operation).

98 Source Control Management with Azure DevOps

Regarding the type of merge operation to apply, you can choose from the following
options:

• Merge (no fast-forward): Non-linear history preserving all commits

• Squash commit: Linear history with only a single commit on the target

• Rebase and fast-forward: Rebase source commits on a target and fast-forward

• Semi-linear merge: Rebase source commits on a target and create a two-parent
merge

Azure DevOps gives you a nice animated graph to show the final result of the merge.
To complete the pull request, click on Complete merge. You need to resolve any merge
conflicts if something happens. With this, the merging phase starts:

Figure 3.59 – Completing the pull request.

Tagging a release 99

If you have an automatic build policy on the target branch (the master branch here), the
build pipeline is executed and then the merge operation is completed:

Figure 3.60 – Pull request completed

In the next section, we'll learn how to use tags on branches to immediately identify the
status of the code inside the repository.

Tagging a release
Git Tags are references that point to specific points in the Git history. Tags are used in
Azure DevOps for marking a particular release (or branch) with an identifier that will be
shared internally in your team to identify, for example, the "version" of your code base.

As an example, in the previous section, we merged the development branch into the
master branch by using a pull request. Now, the master branch contains our latest
release of the code, which we're now ready to share internally.

100 Source Control Management with Azure DevOps

To use tags for your branches, in the Repos hub in Azure DevOps, go to the Tags menu:

Figure 3.61 – Tags

From here, you can create a tag for this release by going to Tags and clicking on New Tag.

Here, you're prompted to insert a tag name (an identifier that cannot contain spaces),
provide a description for this tag, and select the branch that the tag will be applied to:

Figure 3.62 – Create a tag

Summary 101

When you click on Create, the tag will be applied to your branch:

Figure 3.63 – Tag applied to a branch

Summary
In this chapter, we learned how to handle source control management with Azure DevOps
and why it's so important when working in teams when developing code.

We looked at the basic concepts of source control management and Git, the possible
strategies to apply when merging code, how to use Azure DevOps to apply SCM, and how
to handle repositories, commits, branches, and pull requests from Azure DevOps and
development tools such as Visual Studio Code and Visual Studio. We also learned how to
apply better policies to control the source code releases in order to improve the SCM life
cycle, how to protect branches and how to use tags for a branch.

In the next chapter, we'll learn how to create build pipelines with Azure DevOps for
implementing CI/CD practices.

4
Understanding
Azure DevOps

Pipelines
When adopting Azure DevOps in your organization, one of the main important
decisions you must make is how to define the pipeline of your development process.
A pipeline is a company-defined model that describes the steps and actions that a code
base must support, from building to the final release phase. It's a key part of any DevOps
architecture.

In this chapter, we'll learn how to define and use pipelines with Azure DevOps for
building code.

We will cover the following topics:

• Implementing a CI/CD process

• An overview of Azure Pipelines

• Creating and using build agents

• Overview of the YAML format

• Creating a CI/CD pipeline with Azure DevOps

104 Understanding Azure DevOps Pipelines

• Retention of builds

• Multi-stage pipeline

• Build pipeline with GitHub repositories

• Using container jobs in Azure Pipelines

• Let's get started!

Technical requirements
To follow this chapter, you need to have the following:

• A valid organization in Azure DevOps

• An Azure subscription where you can create an Azure VM or a local machine on
one of these environments so that you can install the build agent software

• Visual Studio or Visual Studio Code as your development environment

• Access to the following GitHub repository for cloning the project: https://
github.com/Microsoft/PartsUnlimited

Implementing a CI/CD process
When adopting DevOps in a company, implementing the right DevOps tools with
the right DevOps processes is essential and crucial. One of the fundamental flows in a
DevOps implementation is the continuous integration (CI) and continuous delivery
(CD) process, which can help developers build, test, and distribute a code base in a
quicker, structured, and safer way.

CI is a software engineering practice where developers in a team integrate code
modifications in a central repository a few times in a day. When a code modification
integrated into a particular branch (normally with a pull request, as explained in
the previous chapter), a new build is triggered in order to check the code and detect
integration bugs quickly. Also, automatic tests (if available) are executed during this phase
to check for breakages.

CD is the process that comes after the CI process. In this process, the output of the CI
phase is packaged and delivered to the production stage without bugs. This is extremely
helpful so that we always have a master branch that is tested, consistent, and ready to be
deployed.

https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited

Implementing a CI/CD process 105

In DevOps, you can also have a continuous deployment process in place, where
you can automate the deployment of your code modifications to the final production
environments without manual intervention.

The typical DevOps CI/CD loop is represented in the following famous "loop" diagram:

Figure 4.1 – DevOps CI/CD loop

A typical CI/CD pipeline implementation contains the following stages:

• Commit stage: Here, new code modifications are integrated into the code base and
a set of unit tests are performed in order to check code integrity and quality.

• Build stage: Here, the code is automatically built and then the final results of the
build process (artifacts) are pushed to the final registry.

• Test stage: The build code will be deployed to preproduction, where the final testing
will be performed and then go to production deployment. Here, the code is tested
by adopting alpha and beta deployments. The alpha deployment stage is where
developers check the performance of their new builds and the interactions between
builds. In the Beta deployment stage, developers execute manual testing in order to
double-check whether the application is working correctly.

• Production deployment stage: This is where the final application, after successfully
passing all the testing requirements, goes live to the production stage.

106 Understanding Azure DevOps Pipelines

There are lots of benefits of implementing a CI/CD process in your organizations. The
main benefits are as follows:

• Improved code quality and early bug detection: By adopting automated tests, you
can discover bugs and issues at an early stage and fix them accordingly.

• Complete traceability: The whole build, test, and deployment process is tracked
and can be analyzed later. This guarantees that you can inspect which changes in
a particular build are included and the impact that they can have on the final tests
or release.

• Faster testing and release phases: Automating building and testing of your code
base on every new commit (or before a release).

In the next section, we'll provide an overview of the service offered by the Azure platform
for implementing CI/CD: Azure Pipelines.

Overview of Azure Pipelines
Azure Pipelines is a cloud service offered by the Azure platform that allows you to
automate the building, testing, and releasing phases of your development life cycle (CI/
CD). Azure Pipelines works with any language or platform, it's integrated in Azure
DevOps, and you can build your code on Windows, Linux, or macOS machines.

Azure Pipelines is free for public projects, while for private projects, you have up to 1,800
minutes' (30 hours) worth of pipelines for free each month. More information about
pricing can be found here:

https://azure.microsoft.com/en-us/pricing/details/devops/
azure-devops-services/

Some important feature of Azure Pipelines can be summarized as follows:

• It's platform and language independent, which means you can build code on every
platform using the code base you want.

• It can be integrated with different types of repositories (Azure Repos, GitHub,
GitHub Enterprise, BitBucket, and so on).

• Lots of extensions (standard and community-driven) are available for building your
code and for handling custom tasks.

• Allows you to deploy your code to different cloud vendors.

• You can work with containerized applications such as Docker, Azure Container
Registry, or Kubernetes.

https://azure.microsoft.com/en-us/pricing/details/devops/azure-devops-services/
https://azure.microsoft.com/en-us/pricing/details/devops/azure-devops-services/

Overview of Azure Pipelines 107

To use Azure Pipelines, you need the following:

• An organization in Azure DevOps, where you can create public or private projects

• A source code stored in a version control system (such as Azure DevOps Repos
or GitHub)

Azure Pipelines works with the following schema:

Figure 4.2 – Azure Pipelines schema

When your code is committed to a particular branch inside a repository, the build
pipeline engine starts, build and test tasks are executed, and if all is successfully
completed, your app is built and you have the final output (artifact). You can also
create a release pipeline that takes the output of your build and releases it to the target
environment (staging or production).

To start using Azure Pipelines, you need to create a pipeline. A pipeline in Azure DevOps
can be created in the following two ways:

• Using the Classic interface: This allows you to select some tasks visually from a list
of possible tasks. You only need to fill in the parameters for these tasks.

• Using a scripting language called YAML: The pipeline can be defined by creating
a YAML file inside your repository with all the needed steps.

Using the classic interface can be easier initially, but remember that many features are
only available on YAML pipelines. A YAML pipeline definition is a file, and this can be
versioned and controlled just like any other file inside a repository. You can easily move
the pipeline definition between projects (this is not possible with the Classic interface).

108 Understanding Azure DevOps Pipelines

An Azure Pipeline can be represented as follows (courtesy of Microsoft):

Figure 4.3 – Representation of an Azure Pipeline

A pipeline starts from a trigger (a manual trigger, a push inside a repository, a pull
request, or a schedule). A pipeline is normally composed of one or more stages (logical
separation of concerns in a pipeline, such as building, testing, deployment, and so on; they
can run in parallel), and each stage contains one or more jobs (a set of steps that can also
run in parallel). Every pipeline contains at least one stage if you don't explicitly create it.
Each job runs on an agent (service or piece of software that executes the job). Every step
is composed of a task that performs some action on your code (sequentially). The final
output of a pipeline is an artifact (collection of files or packages published by the build).

When creating a pipeline, you need to define a set of jobs and tasks for automating your
builds (or multi-phased builds). You have native support for testing integration, release
gates, automatic reporting, and so on.

When defining multiple jobs within a pipeline, these jobs are executed in parallel. A
pipeline that contains multiple jobs is called a fan-out scenario:

Figure 4.4 – Fan-out pipeline

Understanding build agents 109

A pipeline with multiple jobs in a single stage can be represented as follows:

pool:

 vmImage: 'ubuntu-latest'

jobs:

- job: job1

 steps:

 - bash: echo "Hello!"

 - bash: echo "I'm job 1"

- job: job2

 steps:

 - bash: echo "Hello again…"

 - bash: echo "I'm job 2"

If you're using stages when defining your pipeline, this is what is called a fan-out/fan-in
scenario:

Figure 4.5 – Fan-out pipeline

Here, each stage is a fan-in operation, where all the jobs in the stage (which can consist
of multiple tasks that run in sequence) must be finished before the next stage can be
triggered (only one stage can be executing at a time). We'll talk about multi-stage pipelines
later in this chapter.

Understanding build agents
To build and deploy your code using Azure Pipelines, you need at least one agent. An
agent is a service that runs the jobs defined in your pipeline. The execution of these jobs
can occur directly on the agent's host machine or in containers.

110 Understanding Azure DevOps Pipelines

When defining agents for your pipeline, you have essentially two types of possible agents:

• Microsoft-hosted agents: This is a service totally managed by Microsoft and it's
cleared on every execution of the pipeline (on each pipeline execution, you have
a fresh new environment).

• Self-hosted agents: This is a service that you need to set up and manage by yourself.
This can be a custom virtual machine on Azure or a custom on-premise machine
inside your infrastructure. In a self-hosted agent, you can install all the software you
need for your builds, and this is persisted on every pipeline execution. A self-hosted
agent can be on Windows, Linux, macOS, or in a Docker container.

Microsoft-hosted agents
Microsoft-hosted agents is the simplest way to define an agent for your pipeline. Azure
Pipelines provides a Microsoft-hosed agent pool by default called Azure Pipelines:

Figure 4.6 – Azure Pipelines default agent pool

By selecting this agent pool, you can create different virtual machine types for executing
your pipeline. At the time of writing, the available standard agent types are as follows:

Table 1.1

Understanding build agents 111

Each of these images has its own set of software automatically installed. You can install
additional tools by using the pre-defined Tool Installer task in your pipeline definition.
More information can be found here:

https://docs.microsoft.com/en-us/azure/devops/pipelines/
tasks/?view=azure-devops#tool.

When you create a pipeline using a Microsoft-hosted agent, you just need to specify
the name of the virtual machine image to use for your agent from the preceding table. As
an example, this is the definition of a hosted agent that's using Windows Server 2019 with
a Visual Studio 2019 image:

- job: Windows

 pool:

 vmImage: 'windows-latest'

When using a Microsoft-hosted agent, you need to remember the following:

• You cannot sign in on the agent machine.

• The agent runs on a Standard DS2v2 Azure Virtual Machine and you cannot
increase that capacity.

• It runs as an administrator user on the Windows platform and as a passwordless
sudo user on the Linux platform.

• For public projects, you have 10 free Microsoft-hosted parallel jobs that can run for
up to 360 minutes each time, with no overall time limit per month.

• For private projects, you have one free parallel job that can run for up to 60 minutes
each time, with the maximum being 1,800 minutes (30 hours) per month. If you
need more capacity, you can pay for additional parallel jobs. By doing this, you can
run each job for up to 360 minutes.

• The Microsoft-hosted agent runs in the same Azure geography as your Azure
DevOps organization, but it's not guaranteed that it will run in the same region too
(an Azure geography contains one or more regions).

Self-hosted agents
While Microsoft-hosted agents are a SaaS service, self-hosted agents are private agents
that you can configure as per your needs by using Azure virtual machines or directly
using your on-premise infrastructure. You are responsible for providing all the necessary
software and tools to execute your pipeline and you're responsible for maintaining and
upgrading your agent.

112 Understanding Azure DevOps Pipelines

A self-hosted agent can be installed on the following platforms:

• Windows

• Linux

• macOS

• Docker

Creating a self-hosted agent involves completing the following activities:

• Prepare the environment

• Prepare permissions on Azure DevOps

• Download and configure the agent

• Start the agent

These steps are similar for all the environments. Next, we'll learn how to create a self-
hosted Windows agent.

Creating a self-hosted Windows agent
A self-hosted Windows agent is used to build and deploy applications built on top of
Microsoft's platforms (such as .NET applications, Azure cloud apps, and so on) but also
for other types of platforms, such as Java and Android apps.

The first step to perform when creating an agent is to register the agent in your Azure
DevOps organization. To do so, you need to sign into your DevOps organization as an
administrator and from the User Settings menu, click on Personal access tokens:

Figure 4.7 – Personal access tokens

Understanding build agents 113

Here, you can create a new personal access token for your organization with an
expiration date and with full access or with a custom defined access level (if you select
the custom defined scope, you need to select the permission you want for each scope).
To see the complete list of available scopes, click on the Show all scopes link at the bottom
of this window:

Figure 4.8 – Create a new personal access token

114 Understanding Azure DevOps Pipelines

Please check that the Agent Pools scope has the Read & manage permission enabled.

When finished, click on Create and then copy the generated token before closing the
window (it will only be shown once).

Important Note
The user that you will be using for the agent must be a user with permissions
to register the agent. You can check this by going to Organization Settings |
Agent pools, selecting the Default pool, and clicking on Security.

Now, you need to download the agent software and configure it. From Organization
Settings | Agent Pools, select the Default pool and from the Agents tab, click on
New agent:

Figure 4.9 – Creating a new agent

Understanding build agents 115

The Get the agent window will open. Select Windows as the target platform, select
x64 or x86 as your target agent platform (machine) accordingly, and then click on the
Download button:

Figure 4.10 – Agent software download page

116 Understanding Azure DevOps Pipelines

This procedure will download a package (normally called vsts-agent-win-x64-
2.166.4.zip). You need to run this package (config.cmd) on the agent machine
(an Azure VM or your on-premise server, which will act as an agent for your builds):

Figure 4.11 – Agent software package

The setup will ask you for the following:

• The URL of your Azure DevOps organization (https://dev.azure.com/
{your-organization})

• The personal access token to use (created previously)

When running the agent (interactively or as a service), it's recommended to run it as a
service if you want to automate builds.

After inserting these parameters, the setup registers the agent:

Figure 4.12 – Agent registration

To register the agent, you need to insert the agent pool, the agent name, and the work
folder (you can leave the default value as-is).

Finally, you need to decide whether your agent must be executed interactively or as
a service. As we mentioned previously, running the agent as a service is recommended,
but in many cases, the interactive option can be helpful because it gives you a console
where you can see the status and running UI tests.

In both cases, please be aware of the user account you select for running the agent. The
default account is the built-in Network Service user, but this user normally doesn't have
all the needed permissions on local folders. Using an administrator account can help you
solve a lot of problems.

If the setup has been completed successfully, you should see a service running on your
agent machine and a new agent that pops up on your agent pool in Azure DevOps:

https://dev.azure.com/

Understanding build agents 117

4.13 – New agent created

If you select the agent and then go to the Capabilities section, you will be able to see all its
capabilities (OS version, OS architecture, computer name, software installed, and so on):

Figure 4.14 – Agent capabilities

The agent's capabilities can be automatically discovered by the agent software or added
by you (user-defined capabilities) if you click on the Add a new capability action.
Capabilities are used by the pipeline engine to redirect a particular build to the correct
agent according to the required capabilities for the pipeline (demands).

118 Understanding Azure DevOps Pipelines

When the agent is online, it's ready to accept your code build, which should be queued.

Remember that you can also install multiple agents on the same machine (for example,
if you want the possibility to execute core pipelines or handle jobs in parallel), but this
scenario is only recommended if the agents will not share resources.

When to use a Microsoft-hosted or a self-hosted agent
Microsoft-hosted agents are normally useful when you have a standard code base and
you don't need particular software or environment configuration to build your code. If
you're in this scenario, using a Microsoft-hosted agent is recommended because you don't
have to worry about creating environments. As an example, if you need to build an Azure
Function project, normally, you don't have the need to install custom software on the
build agent and the Microsoft-hosted agent can work perfectly.

Self-hosted agents are the way to go when you need a particular environment
configuration, when you need a particular piece of software or tools installed on the
agent, and when you need more power for your builds. Self-hosted agents are also the
way to go when you need to preserve the environment between each run of your builds.
A self-hosted agent is normally the right choice when you need to have better control of
your agent or you wish to deploy your build to on-premise environments (not accessible
externally). It also normally allows you to save money.

Now that we've discussed about the possible build agents that you can use for your build
pipelines, in the next section, we'll provide an overview of YAML, the scripting language
that allows you to define a pipeline.

Overview of the YAML language
YAML, an acronym for YAML Ain't Markup Language, is a human-readable scripting
language used for data serialization and normally used for handling configurations
definitions for applications. It can be considered a superset of JSON.

YAML uses indentation for handling the structure of the object's definitions, and it's
insensitive to quotation marks and braces. It's simply a data representation language and is
not used for executing commands.

With Azure DevOps, YAML is extremely important because it allows you to define a
pipeline by using a script definition instead of a graphical interface (that cannot be ported
between projects).

The official YAML website can be found here:

http://yaml.org/

http://yaml.org/

Overview of the YAML language 119

A YAML structure is based on key-value elements:

Key: Value # This is a comment

In the following sections, we'll learn how to define objects in YAML.

Scalars
As an example, the following are scalar variables that have been defined in YAML:

Number: 1975
quotedText: "some text description"
notQuotedtext: strings can be also without quotes
boolean: true
nullKeyValue: null

You can also define multi-line keys by using ?, followed by a space, as follows:

? |

 This is a key

 that has multiple lines

: and this is its value

Collections and lists
This is a YAML definition for a collection object:

Cars:

 - Fiat

 - Mercedes

 - BMW

You can also define nested collections:

- Drivers:

 name: Stefano Demiliani

 age: 45

 Driving license type:

 - type: full car license

 license id: ABC12345

 expiry date: 2025-12-31

120 Understanding Azure DevOps Pipelines

Dictionaries
You can define a Dictionary object by using YAML in the following way:

CarDetails:

 make: Mercedes

 model: GLC220

 fuel: Gasoline

Document structure
YAML uses three dashes, ---, to separate directives from document content and
to identify the start of a document. As an example, the following YAML defines two
documents in a single file:

Products purchased

- item : Surface Book 2

 quantity: 1

- item : Surface Pro 7

 quantity: 3

- item : Arc Mouse

 quantity: 1

Product out of stock

- item : Surface 4

- item : Microsoft Trackball

Complex object definition
As an example of how to define a complex object in YAML, the following is the
representation used for an Invoice object:

invoice: 20-198754

date : 2020-05-27

bill-to: C002456

 Name : Stefano Demiliani

Creating a build pipeline with Azure DevOps 121

 address:

 lines:

 Viale Pasubio, 21

 c/o Microsoft House

 city : Milan

 state : MI

 postal : 20154

ship-to: C002456

product:

 - itemNo : ITEM001

 quantity : 1

 description : Surface Book 2

 price : 1850.00

 - sku : ITEM002

 quantity : 2

 description : Arc Mouse

 price : 65.00

tax : 80.50

total: 1995.50

comments:

 Please deliver on office hours.

 Leave on the reception.

Now that we've provided a quick overview of the YAML syntax, in the next section, we'll
learn how to create a build pipeline with Azure DevOps.

Creating a build pipeline with Azure DevOps
Having a build pipeline in place is a fundamental step if you want to implement
continuous integration for your code (having your code automatically built and tested
on every commit).

The prerequisite to creating a build pipeline with Azure DevOps is obviously to have some
code stored inside a repository.

122 Understanding Azure DevOps Pipelines

To create a build pipeline with Azure DevOps, you need to go to the Pipelines hub and
select the Pipelines action:

Figure 4.15 – Build pipeline creation

From here, you can create a new build pipeline by selecting the New pipeline button.
When pressed, you will see the following screen, which asks you for a code repository:

Creating a build pipeline with Azure DevOps 123

Figure 4.16 – Selecting a repository

This screen is extremely important. From here, you can start creating a build pipeline in
two possible ways (described previously):

1. Using a YAML file to create your pipeline definition. This is what happens when you
select the repository in this window.

2. Using the classic editor (graphical user interface). This is what happens when you
click on the Use the classic editor link at the bottom of this page.

In the next section, we'll learn how to create a build pipeline by using these two methods.

124 Understanding Azure DevOps Pipelines

Pipeline definition with the classic editor
The classic editor permits you to define a build pipeline for your project graphically by
selecting pre-defined actions. As we mentioned previously, a pipeline definition created in
this way is not under source control.

When you click on the Use the classic editor link, you need to select the repository where
your code is stored (Azure Repos Git, GitHub, GitHub Enterprise Server, Subversion,
TFVC, Bitbucket Cloud, or Other Git) and the branch that the build pipeline will be
connected to:

Figure 4.17 – Classic editor pipeline definition

Creating a build pipeline with Azure DevOps 125

Then, you need to choose a template for the kind of app you're building. You have a set of
predefined templates to choose from (that you can customize later), but you can also start
from an empty template:

Figure 4.18 – Pipeline template selection

126 Understanding Azure DevOps Pipelines

If predefined templates fit your needs, you can start by using them; otherwise, it's
recommended to create a custom pipeline by selecting the actions you need.

Here, my application that's stored in the Azure DevOps project repository is an ASP.NET
web application (an e-commerce website project called PartsUnlimited; you can find
the public repository at the following URL: https://github.com/Microsoft/
PartsUnlimited), so I've selected the ASP.NET template.

When selected, this is the pipeline template that will be created for you automatically:

Figure 4.19 – Pipeline created from a template

https://github.com/Microsoft/PartsUnlimited
https://github.com/Microsoft/PartsUnlimited

Creating a build pipeline with Azure DevOps 127

Let's check every section of the pipeline in detail.

The pipeline (here, this is called PartsUnlimited-demo-pipeline) runs on
a Microsoft-hosted agent (Azure Pipelines agent pool) based on the vs2017-win2016
template (Windows Server 2016 with Visual Studio 2017), as shown in the following
screenshot:

Figure 4.20 – Agent specification on the pipeline

128 Understanding Azure DevOps Pipelines

The agent job starts by installing the NuGet package manager and restoring the required
packages for building the project in the selected repository. For these actions, the pipeline
definition contains the tasks that you can see in the following screenshot:

Figure 4.21 – NuGet tasks

Creating a build pipeline with Azure DevOps 129

Then, there's a task for building the solution:

Figure 4.22 – Build solution task

130 Understanding Azure DevOps Pipelines

There's also a task for testing the solution and publishing the test results:

Figure 4.23 – Test Assemblies task

The last steps are for publishing the sources of the build process as artifacts (output of
the build):

Creating a build pipeline with Azure DevOps 131

Figure 4.24 – Publishing tasks

If you select the Variables tab, you will see that there are some parameters that are used
during the build process. Here, you can create your own variables to use inside the
pipeline if needed:

Figure 4.25 – Pipeline variables

132 Understanding Azure DevOps Pipelines

The next section is called Triggers. Here, you can define what triggers start your pipeline.
By default, no triggers are published initially, but here, you can enable CI to automatically
start your pipeline on every commit on the selected branch:

Figure 4.26 – Pipeline triggers

Important Note
Enabling CI is a recommended practice if you want every piece of code that's
committed on a branch (for example, on the master branch) to always be tested
and safely controlled. In this way, you can be assured that the code is always
working as expected.

In the Option tab, you can set some options related to your build definition. For example,
here, you can create links to all the work items so that they're linked to associated changes
when a build completes successfully, create work items on failure of a build, set the status
badge for your pipeline, specify timeouts, and so on:

Creating a build pipeline with Azure DevOps 133

Figure 4.27 – Pipeline options

The Retention tab, on the other hand, is used for configuring the retention policy for this
specific pipeline (how many days to keep artifacts for, the number of days to keep runs
and pull requests for, and so on). Doing this will override the general retention settings.
We'll talk about them later in the Retention of builds section.

134 Understanding Azure DevOps Pipelines

Once you've finished defining the pipeline, you can click Save & queue to save your
definition. By clicking on Save and run, the pipeline will be placed in a queue and wait
for an agent:

Figure 4.28 – Run pipeline

When the agent is found, the pipeline is executed and your code is built:

Figure 4.29 – Pipeline execution starting

Creating a build pipeline with Azure DevOps 135

You can follow the execution of each step of the pipeline and see the related logs. If the
pipeline ends successfully, you can view a summary of its execution:

Figure 4.30 – Pipeline – final result

You can also select the Tests tab to review the test execution status:

Figure 4.31 – Pipeline tests result

In the next section, we'll learn how to create a YAML pipeline for this application.

YAML pipeline definition
As previously explained, when you start creating a build pipeline with Azure DevOps, the
wizard creates a YAML-based pipeline by default.

136 Understanding Azure DevOps Pipelines

To start creating a YAML pipeline, go to the Pipeline section in Azure DevOps and click
on New Pipeline.

Here, instead of selecting the classic editor (as we did in the previous section), just select
the type of repository where your code is located (Azure Repos Git, GitHub, BitBucket,
and so on):

Figure 4.32 – YAML pipeline definition

Then, select your repository from the available repositories list:

Figure 4.33 – YAML pipeline – repository selection

Creating a build pipeline with Azure DevOps 137

The system now analyzes your repository and proposes a set of available templates
according to the code stored in the repository itself. You can start from a blank YAML
template or you can select a template. Here, I'm selecting the ASP.NET template:

Figure 4.34 – YAML pipeline – template selection

138 Understanding Azure DevOps Pipelines

The system creates a YAML file (called azure-pipelines.yml), as shown in the
following screenshot:

Figure 4.35 – YAML pipeline definition

The generated YAML definition contains a set of tasks, just like in the previous
example, but here, these tasks are in their YAML definition. The complete generated
file is as follows:

ASP.NET

Build and test ASP.NET projects.

Add steps that publish symbols, save build artifacts,
 deploy, and more:

Creating a build pipeline with Azure DevOps 139

https://docs.microsoft.com/azure/devops/pipelines/
apps/aspnet/build-aspnet-4

trigger:

- master

pool:

 vmImage: 'windows-latest'

variables:

 solution: '**/*.sln'

 buildPlatform: 'Any CPU'

 buildConfiguration: 'Release'

steps:

- task: NuGetToolInstaller@1

- task: NuGetCommand@2

 inputs:

 restoreSolution: '$(solution)'

- task: VSBuild@1

 inputs:

 solution: '$(solution)'

 msbuildArgs: '/p:DeployOnBuild=true /
p:WebPublishMethod=Package /p:PackageAsSingleFile=true
/p:SkipInvalidConfigurations=true /p:PackageLocation="$(build.
artifactStagingDirectory)"'

 platform: '$(buildPlatform)'

 configuration: '$(buildConfiguration)'

- task: VSTest@2

 inputs:

 platform: '$(buildPlatform)'

 configuration: '$(buildConfiguration)'

Here I add two more tasks for publishing the symbols and the

140 Understanding Azure DevOps Pipelines

final artifacts of the pipeline:

task: PublishSymbols@2

 displayName: 'Publish symbols path'

 inputs:

 SearchPattern: '**\bin***.pdb'

 PublishSymbols: false

 continueOnError: true

- task: PublishBuildArtifacts@1

 displayName: 'Publish Artifact'

 inputs:

 PathtoPublish: '$(build.artifactstagingdirectory)'

 ArtifactName: '$(Parameters.ArtifactName)'

 condition: succeededOrFailed()

As you can see, the YAML file contains the trigger that starts the pipeline (here, this is
a commit on the master branch), the agent pool to use, the pipeline variables, and the
sequence of each task to execute (with its specific parameters).

Click on Save and run as shown in the previous screenshot to queue the pipeline and have
it executed. The following screenshot shows the executed YAML pipeline.

Figure 4.36 – YAML pipeline executed

To add new tasks, it's useful to use the assistant tool on the right of the editor frame.
It allows you to have a Tasks list where you can search for a task, fill in the necessary
parameters, and then have the final YAML definition:

Creating a build pipeline with Azure DevOps 141

Figure 4.37 – YAML pipeline task selection

When you choose to create a pipeline with YAML, Azure DevOps creates a file that's
stored in the same repository that your code is stored in:

Figure 4.38 – YAML pipeline file created

This file is under source control and versioned on every modification.

142 Understanding Azure DevOps Pipelines

For a complete reference to the YAML schema for a pipeline, I suggest following this link:

https://docs.microsoft.com/en-us/azure/devops/pipelines/yaml-
schema?view=azure-devops&tabs=schema%2Cparameter-schema

Retention of builds
When you run a pipeline, Azure DevOps logs each step's execution and stores the final
artifacts and tests for each run.

Azure DevOps has a default retention policy for pipeline execution of 30 days. You can
change these default values by going to Project settings | Pipelines | Settings:

Figure 4.39 – Pipeline retention policy

You can also use the Copy files task to store your build and artifacts data in
external storage so that you can preserve them for longer than what's specified in
the retention policy:

https://docs.microsoft.com/en-us/azure/devops/pipelines/yaml-schema?view=azure-devops&tabs=schema%2Cparameter-schema.
https://docs.microsoft.com/en-us/azure/devops/pipelines/yaml-schema?view=azure-devops&tabs=schema%2Cparameter-schema.

Retention of builds 143

Figure 4.40 – Copy files task

The YAML definition for this task is as follows:

- task: CopyFiles@2

 displayName: 'Copy files to shared network'

 inputs:

 SourceFolder: '$(Build.SourcesDirectory)'

 Contents: '**'

 TargetFolder: '\\networkserver\storage\$(Build.
BuildNumber)'

Important Note
Remember that any data saved as artifacts with the Publish Build Artifacts
task is periodically deleted.

More information about the Copy files task can be found here:

https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/
utility/copy-files?view=azure-devops&tabs=yaml.

https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/utility/copy-files?view=azure-devops&tabs=yaml
https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/utility/copy-files?view=azure-devops&tabs=yaml

144 Understanding Azure DevOps Pipelines

Multi-stage pipeline
As we explained previously, you can organize the jobs in your pipeline into stages.
Stages are logical boundaries inside a pipeline flow (units of works that you can assign
to an agent) that allow you to isolate the work, pause the pipeline, and execute checks or
other actions. By default, every pipeline is composed of one stage, but you can create more
than one and arrange those stages into a dependency graph.

The basic YAML definition of a multi-stage pipeline is as follows:

stages:

 - stage: Build

 jobs:

 - job: BuildJob

 steps:

 - script: echo Build!

 - stage: Test

 jobs:

 - job: TestOne

 steps:

 - script: echo Test 1

 - job: TestTwo

 steps:

 - script: echo Test 2

 - stage: Deploy

 jobs:

 - job: Deploy

 steps:

 - script: echo Deployment

As an example of how to create a multi-stage pipeline with YAML, let's look at a pipeline
that builds code in your repository (with .NET Core SDK) and publishes the artifacts
as NuGet packages. The pipeline definition is as follows. The pipeline uses the stages
keyword to identify that this is a multi-stage pipeline.

In the first stage definition (Build), we have the tasks for building the code:

trigger:

 - master

 stages:

Multi-stage pipeline 145

 - stage: 'Build'

 variables:

 buildConfiguration: 'Release'

 jobs:

 - job:

 pool:

 vmImage: 'ubuntu-latest'

 workspace:

 clean: all

 steps:

 - task: UseDotNet@2

 displayName: 'Use .NET Core SDK'

 inputs:

 packageType: sdk

 version: 2.2.x

 installationPath: $(Agent.ToolsDirectory)/dotnet

 - task: DotNetCoreCLI@2

 displayName: "NuGet Restore"

 inputs:

 command: restore

 projects: '**/*.csproj'

 - task: DotNetCoreCLI@2

 displayName: "Build Solution"

 inputs:

 command: build

 projects: '**/*.csproj'

 arguments: '--configuration (buildConfiguration)'

Here, we installed the .NET Core SDK by using the UseDotnet standard task template
that's available in Azure DevOps (more information can be found here: https://docs.
microsoft.com/en-us/azure/devops/pipelines/tasks/tool/dotnet-
core-tool-installer?view=azure-devops). After that, we restored the required
NuGet packages and built the solution.

https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/tool/dotnet-core-tool-installer?view=azure-devops)
https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/tool/dotnet-core-tool-installer?view=azure-devops)
https://docs.microsoft.com/en-us/azure/devops/pipelines/tasks/tool/dotnet-core-tool-installer?view=azure-devops)

146 Understanding Azure DevOps Pipelines

Now, we have the task of creating the release version of the NuGet package. This package
is saved in the packages/release folder of the artifact staging directory. Here, we will use
nobuild = true because in this task, we do not have to rebuild the solution again
(no more compilation):

 - task: DotNetCoreCLI@2

 displayName: 'Create NuGet Package - Release Version'

 inputs:

 command: pack

 packDirectory: '$(Build.ArtifactStagingDirectory)/
packages/releases'

 arguments: '--configuration $(buildConfiguration)'

 nobuild: true

As the next step, we have the task of creating the prerelease version of the NuGet package.
In this task, we're using the buildProperties option to add the build number to the
package version (for example, if the package version is 2.0.0.0 and the build number is
20200521.1, the package version will be 2.0.0.0.20200521.1). Here, a build of the package
is mandatory (for retrieving the build ID):

 - task: DotNetCoreCLI@2

 displayName: 'Create NuGet Package - Prerelease Version'

 inputs:

 command: pack

 buildProperties: 'VersionSuffix="$(Build.BuildNumber)"'

 packDirectory: '$(Build.ArtifactStagingDirectory)/
packages/prereleases'

 arguments: '--configuration $(buildConfiguration)'

The next task publishes the package as an artifact:

 - publish: '$(Build.ArtifactStagingDirectory)/packages'

 artifact: 'packages'

Multi-stage pipeline 147

Next, we need to define the second stage, called PublishPrereleaseNuGetPackage.
Here, we skip the checkout of the repository and the download step downloads
the packages artifact that we published in the previous build stage. Then, the
NuGetCommand task publishes the prerelease package to an internal feed in Azure
DevOps called Test:

- stage: 'PublishPrereleaseNuGetPackage'

 displayName: 'Publish Prerelease NuGet Package'

 dependsOn: 'Build'

 condition: succeeded()

 jobs:

 - job:

 pool:

 vmImage: 'ubuntu-latest'

 steps:

 - checkout: none

 - download: current

 artifact: 'packages'

 - task: NuGetCommand@2

 displayName: 'Push NuGet Package'

 inputs:

 command: 'push'

 packagesToPush: '$(Pipeline.Workspace)/packages/
prereleases/*.nupkg'

 nuGetFeedType: 'internal'

 publishVstsFeed: 'Test'

148 Understanding Azure DevOps Pipelines

Now, we have to define the third stage, called PublishReleaseNuGetPackage, which
creates the release version of our package for NuGet:

- stage: 'PublishReleaseNuGetPackage'

 displayName: 'Publish Release NuGet Package'

 dependsOn: 'PublishPrereleaseNuGetPackage'

 condition: succeeded()

 jobs:

 - deployment:

 pool:

 vmImage: 'ubuntu-latest'

 environment: 'nuget-org'

 strategy:

 runOnce:

 deploy:

 steps:

 - task: NuGetCommand@2

 displayName: 'Push NuGet Package'

 inputs:

 command: 'push'

 packagesToPush: '$(Pipeline.Workspace)/packages/
releases/*.nupkg'

 nuGetFeedType: 'external'

 publishFeedCredentials: 'NuGet'

This stage uses a deployment job to publish the package to the configured environment
(here, this is called nuget-org). An environment is a collection of resources inside
a pipeline.

In the NuGetCommand task, we specify the package to push and that the feed where
we're pushing the package to is external (nuGetFeedType). The feed is retrieved
by using the publishFeedCredentials property, set to the name of the service
connection we created.

Multi-stage pipeline 149

For this stage, we have created a new environment:

Figure 4.41 – Creating a new environment

150 Understanding Azure DevOps Pipelines

Once the environment has been created, in order to publish it to NuGet, you need to
create a new service connection by going to Project Settings | Service Connections |
Create Service Connection, selecting NuGet from the list of available service connection
types, and then configuring the connections according to your NuGet account:

Figure 4.42 – New NuGet service connection

With that, we have created a multi-stage build pipeline. When the pipeline is executed and
all the stages terminate successfully, you will see a results diagram that looks as follows:

Building a pipeline with GitHub repositories 151

Figure 4.43 – Multi-stage build pipeline executed

Now that we have understood what a multi-stage pipeline is, we'll create some pipelines
with GitHub repositories in the next section.

Building a pipeline with GitHub repositories
GitHub is one of the most popular platforms for source control management and often,
it's quite common to have scenarios where the code is stored inside a GitHub repository
and you want to use Azure DevOps for managing CI/CD.

By using Azure DevOps and the Azure Pipeline service, you can also create pipelines
for a repository stored on GitHub, thus triggering a build pipeline on every commit in
a branch inside the GitHub repository. We will do this by following these steps:

1. To use Azure Pipelines to build your GitHub repository, you need to add the
Azure DevOps extension to your GitHub account. From your GitHub page,
select the Marketplace link from the top bar and search for Azure Pipelines.
Select the Azure Pipelines extension and click on Set up a plan, as shown in the
following screenshot:

Figure 4.44 – Azure Pipelines on GitHub – setup

152 Understanding Azure DevOps Pipelines

2. Select the Free plan, click the Install it for free button, and then click Complete
order and begin installation.

3. Now, the Azure Pipelines installation will ask you if this app should be available for
all your repositories or only for selected repositories. Select the desired option and
click on Install:

Figure 4.45 – Azure Pipelines on GitHub – installation

Building a pipeline with GitHub repositories 153

4. You will now be redirected to Azure DevOps, where you can create a new project
(or select an existing one) for handling the build process. Here, I'm going to create
a new project:

Figure 4.46 – Setting up your Azure Pipelines project

154 Understanding Azure DevOps Pipelines

5. Now, you need to authorize Azure Pipelines so that it can access your
GitHub account:

Figure 4.47 – Authorizing Azure Pipelines to access GitHub

Building a pipeline with GitHub repositories 155

When the necessary authorization is given, the project will be created for you on
Azure DevOps and the pipeline creation process will start. You'll be immediately
prompted to select a GitHub repository for the build from the list of available
GitHub repositories in your account:

Figure 4.48 – Selecting a GitHub repository

156 Understanding Azure DevOps Pipelines

6. Here, I'm selecting a repository where I have an Azure Function project. As you
can see, Azure Pipelines has recognized my project and proposed a set of available
templates for the pipeline (but you can also start from a blank template or from
a YAML file that you have in any branch of the repository). Here, I will select
.NET Core Function App to Windows on Azure:

Figure 4.49 – Configuring the pipeline

A multi-stage YAML pipeline (Build and Deploy stages) will be created for you and saved
as a YAML file (azure-pipelines.yml) inside your GitHub repository:

Building a pipeline with GitHub repositories 157

Figure 4.50 – multi.stage YAML pipeline definition
This pipeline is triggered on every commit on the master branch.

7. Click the Save and run button. Here, the pipeline will be queued and waiting for
an agent, then executed.

Every time you commit code inside your GitHub repository, the build pipeline on
Azure DevOps will be triggered automatically.

If you're building a public repository on GitHub, it's quite useful to show all your
users that the code inside this repository has been checked and tested with a build
pipeline. Then, you can show the result of the build. You can do that by placing
a badge in your repository.

A badge is a dynamically generated image that reflects the status of a build
(never built, success, or fail) and it's hosted on Azure DevOps.

158 Understanding Azure DevOps Pipelines

8. To do so, select your pipeline in Azure DevOps, click on the three dots on the right,
and select Status badge:

Figure 4.51 – Status badge definition

9. From here, you can copy the Sample markdown string and place it in the Readme.
md file on your GitHub repository:

Figure 4.52 – Build status badge markdown

Every time a user accesses your repository, they will be able to see the status of the latest
build via a graphical badge:

Figure 4.53 – Build pipeline Status badge

Next, let's look at how to execute jobs in parallel.

Building a pipeline with GitHub repositories 159

Executing jobs in parallel in an Azure Pipeline
Within an Azure Pipeline, you can also execute jobs in parallel. Each job can be
independent of other jobs and can also be executed on a different agent. This will allow
you to speed up your build time and improve your pipeline's performance.

As an example of how to handle parallel jobs in a pipeline, consider a simple pipeline
where you have to execute three PowerShell scripts called Task 1, Task 2, and Final Task.
Task 1 and Task 2 can be executed in parallel, while Final Task can only be executed
when the previous two tasks are completed.

When you start creating a new pipeline (I'm using the classic editor here for simplicity),
Azure DevOps creates an agent job (here, this is called Agent Job 1). You can add your
task to this agent. By selecting the agent job, you can specify the agent pool where this task
runs. Here, I want this task to be executed on a Microsoft-hosted agent pool:

Figure 4.54 – Agent specification

160 Understanding Azure DevOps Pipelines

Then, to add a new agent pool to your pipeline (for executing the other task
independently), click the three dots beside the pipeline and select Add an agent job:

Figure 4.55 – Add an agent job

Now, we'll add a second agent job (here, this is called Agent job 2) that runs on
a self-hosted agent. This job will execute the Task 2 PowerShell script:

Figure 4.56 – Agent selection

Building a pipeline with GitHub repositories 161

Finally, we'll add a new agent job (here, this is called Agent Job 3) to execute the Final
Task that will run on a Microsoft-hosted agent. However, this job has dependencies from
Agent Job 1 and Agent Job 2:

Figure 4.57 – Agent job dependencies

162 Understanding Azure DevOps Pipelines

In this way, the first two tasks start in parallel and the final job will wait until the two
previous tasks are executed.

For more information about parallel jobs in an Azure pipeline, I recommend that you
check out this page:

https://docs.microsoft.com/en-us/azure/devops/pipelines/
process/phases?view=azure-devops&tabs=yaml

Agents on Azure Container Instances
If standard Microsoft-hosted agents don't fit your needs (requirements, performance, and
so on), there's also the possibility to create a self-hosted agent for Azure DevOps that runs
inside a Docker container on the Azure Container Instances (ACI) service.

You can create a build agent running on Azure Container Instances by using a custom
image or by reusing one of Microsoft's available images.pipe

To create a build agent running on ACI, you need to create a personal access token for
your Azure DevOps organization. To do so, from your Azure DevOps organization home
page, open the user settings (top-right corner) and select Personal access tokens.

When you have the personal access token for your agent, you can create an agent on ACI
by executing the following command from the Azure CLI (after connecting to your Azure
subscription):

az container create -g RESOURCE_GROUP_NAME -n CONTAINER_NAME
--image mcr.microsoft.com/azure-pipelines/vsts-agent --cpu 1
--memory 7 --environment-variables VSTS_ACCOUNT=AZURE_DEVOPS_
ACCOUNT_NAME VSTS_TOKEN=PERSONAL_ACCESS_TOKEN VSTS_AGENT=AGENT_
NAME VSTS_POOL=Default

Here, we have the following:

• RESOURCE_GROUP_NAME is the name of your resource group in Azure where this
resource will be created.

• CONTAINER_NAME is the name of the ACI container.

• AZURE_DEVOPS_ACCOUNT_NAME is the name of your Azure DevOps account.

• PERSONAL_ACCESS_TOKEN is the personal access token you created previously.

• AGENT_NAME is the name of the build agent that you want to create. This will be
displayed on Azure DevOps.

https://docs.microsoft.com/en-us/azure/devops/pipelines/process/phases?view=azure-devops&tabs=yaml
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/phases?view=azure-devops&tabs=yaml

Using container jobs in Azure Pipelines 163

In this command, there are also other two important parameters:

• --image is used to select the name of the Azure Pipelines image for creating your
agent, as described here: https://hub.docker.com/_/microsoft-azure-
pipelines-vsts-agent.

• VSTS_POOL is used to select the agent pool for your build agent.

Remember that you can start and stop an ACI instance by using the az container
stop and az container start commands. This can help you save money.

Using container jobs in Azure Pipelines
In this chapter, we saw that when you create a pipeline, you define jobs, and that when the
pipeline is executed, these jobs runs on the host machine where the agent is installed.

If you're using Windows or Linux agents, you can also run a job inside a container
(in an isolated way from the host). To run a job inside a container, you need to have
Docker installed on the agent and your pipeline must have permission to access the
Docker daemon. If you're using Microsoft-hosted agents, running jobs in containers is
actually supported on the windows-2019 and ubuntu-16.04 pool images.

As an example, this is a YAML definition for using a container job in a Windows pipeline:

pool:

 vmImage: 'windows-2019'

container: mcr.microsoft.com/windows/servercore:ltsc2019

steps:

- script: date /t

 displayName: Gets the current date

- script: dir

 workingDirectory: $(Agent.BuildiDirectory)

 displayName: list the content of a folder

https://hub.docker.com/_/microsoft-azure-pipelines-vsts-agent
https://hub.docker.com/_/microsoft-azure-pipelines-vsts-agent

As we mentioned previously, to run a job inside a Windows container, you need to use
the windows-2019 image pool. It's required that the kernel version of the host and the
container match, so here, we're using the ltsc2019 tag to retrieve the container's image.

For a Linux-based pipeline, you need to use the ubuntu-16.04 image:

pool:

 vmImage: 'ubuntu-16.04'

container: ubuntu:16.04

steps:

- script: printenv

As you can see, the pipeline creates a container based on the selected image and runs the
command (steps) inside that container.

Summary
In this chapter, we provided an overview of the Azure Pipelines service and we saw
how to implement a CI/CD process by using Azure DevOps. We also saw how to create
a pipeline for code hosted in a repository by using the graphical interface and by using
YAML, as well as how to use and create build agents. We then looked at how to create
a build pipeline by using the classic editor and by using a YAML definition. We also saw
an example of a multi-stage pipeline and how to use Azure DevOps pipelines to build
code inside a GitHub repository, before looking at how to use parallel tasks in a build
pipeline to improve build performance. Finally, we learned how to create a build agent
on Azure Container Instances and how to use a container's jobs.

In the next chapter, we'll learn how to execute quality tests for our code base in
a build pipeline.

5
Running

Quality Tests in
a Build Pipeline

In the previous chapter, we introduced Azure Pipelines and learned how to implement a
CI/CD process using Azure DevOps, GitHub, and containers.

In this chapter, we are going to cover how to run quality tests in a build pipeline. We
will begin by explaining what the benefits of automatic testing are. Then, we will look
at how to run unit tests in a build pipeline, how to perform code coverage testing, and
how to view the test results. Finally, we will cover how to use Feature Flags to test code in
production.

The following topics will be covered in this chapter:

• Benefits of automatic testing

• Introduction to unit testing

• Running unit tests in a build pipeline

• Introduction to code coverage testing

166 Running Quality Tests in a Build Pipeline

• Performing code coverage testing

• Assigning test results to work items

• Introduction to Feature Flags

• Using Feature Flags to test in production

Technical requirements
To follow this chapter, you need to have an active Azure DevOps organization. The
organization that will be used in this chapter is called the Parts Unlimited organization.
It was created in Chapter 1, Azure DevOps Overview. You also need to have Visual
Studio 2019 installed, which can be downloaded from https://visualstudio.
microsoft.com/downloads/. For the latest demo, you will need Visual Studio Code
with the C# extension installed and the .NET Core SDK, version 3.1 or later.

The source code for our sample application can be downloaded from the following link:

https://github.com/PacktPublishing/Learning-Azure-DevOps-
--B16392/tree/master/Chapter%205/RazorFeatureFlags

Benefits of automatic testing
After adding a new feature to your application, you want to know if it will work correctly,
given all the possible interactions. You also don't want to break any other features with
this new functionality and want to know if the code is easily understood by others, as well
as being maintainable.

All of this can be tested manually. But as the project and code base grows over time,
testing all these features manually can become repetitive and error-prone. This is where
automatic testing comes in.

There has always been a great deal of controversy around automatic testing. Many people
believe that testing is too expensive to create and maintain. This is indeed true when
tests are created badly. But when automatic tests are created properly, it will absolutely
lower the amount of time and costs compared to frequent manual testing or releasing
poor-quality software. Using automatic testing, your project will benefit from the ability
to release software more frequently. It can be reused and run repeatedly, delivering faster
results and feedback to the team. The earlier a bug is detected, the more cost-effective it is
to fix it.

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://github.com/PacktPublishing/Learning-Azure-DevOps---B16392/tree/master/Chapter%205/RazorFeatureFlags
https://github.com/PacktPublishing/Learning-Azure-DevOps---B16392/tree/master/Chapter%205/RazorFeatureFlags

Introduction to unit testing 167

In conjunction with CI, where the code is automatically pushed into production,
automatic testing will protect teams from releasing bugs into their software. However,
there is a trade-off. Developers need to dedicate more time to writing and maintaining test
code. However, by investing this extra time, the outcome will be higher quality code, and
code that has been proven to function completely as expected.

There are different types of automated testing you can perform; for instance, you can
run regression, acceptance, and security tests. In this chapter, we are going to focus on
development testing, which is also used in CI and can be done directly from the build
pipeline.

Visual Studio and Azure DevOps both offer features for testing. They are test framework-
agnostic, so you can plug in your own framework and bring third-party tools as well. You
can easily add test adapters in order to run the tests and explore the results. This can make
testing part of your daily software build process.

In the upcoming sections, we will cover unit testing and code coverage testing, which
is part of development testing. First, we will describe how to run an automatic unit test
from a build pipeline, and then how to perform code coverage and UI tests from a build
pipeline.

Introduction to unit testing
With unit testing, you break up code into small pieces, called units, that can be tested
independently from each other. These units can consist of classes, methods, or single lines
of code. The smaller the better works best here. This will give you a better view of how
your code is performing and allows tests to be run fast.

In most cases, unit tests are written by the developer that writes the code. There are two
different ways of writing unit tests: before you write the actual production code, or after.
Most programmers write it afterwards, which is the traditional way of doing things, but if
you are using test-driven development (TDD), you will typically write them beforehand.
Unit testing will also make code documentation easier. It encourages better coding
practices and you can leave code pieces to describe the code's functionality behind. Here,
you will focus more on updating a system of checks.

In the next section, we are going to cover how to run unit tests in a build pipeline.

168 Running Quality Tests in a Build Pipeline

Running unit tests in a build pipeline
Our Parts Unlimited test project already has unit tests created. So, this is a good pick
for this demo. First, we are going to look at the application and the tests that are created.
Therefore, we have to clone the repository to our local filesystem and open the solution in
Visual Studio.

Downloading the source code
We are going to create unit tests for the web application for Parts Unlimited. First, we need
to clone the repository from Azure DevOps to our filesystem. This will allow us to add the
unit tests to it using Visual Studio Code. Therefore, we must take the following steps:

1. Open a web browser and navigate to https://dev.azure.com/.

2. Log in with your Microsoft account and select the Parts.Unlimited project. Then,
from the left menu, select Repos. This will let you navigate to the source code of the
project.

3. From the top-right menu, select Clone:

Figure 5.1 – Search result

4. On the next screen, make sure that Clone in Visual Studio is selected and click the
button shown as follows:

https://dev.azure.com/

Running unit tests in a build pipeline 169

Figure 5.2 – Clone repository

5. Now, Visual Studio will open. From here, we will take a brief look at the test classes
that are already in the project. For this, open the Solution Explorer window and
navigate to test > PartsUnlimited.UnitTests:

Figure 5.3 – Unit test project

6. There are different test projects available in this project. Take some time to become
familiar with what is actually being tested. The default testing framework for Visual
Studio is being used here, which is MS Test.

170 Running Quality Tests in a Build Pipeline

7. From Visual Studio, you will be able to build and run the application. To do this,
press F5. Alternatively, from the top menu, select Debug > Start Debugging:

Figure 5.4 – Unit test project

8. Once the project has been built, the website will look as follows:

Figure 5.5 – Sample website

9. Go back to Visual Studio and stop the debugger.

Now that everything is working, we can start creating a build pipeline, which includes
running the unit test projects.

Running unit tests in a build pipeline 171

Creating the pipeline
To create the pipeline, we need to go back to Azure DevOps. From there, follow these
steps:

1. From the left-hand menu, select Pipelines.

2. At the top-right of the screen, find and click New pipeline:

Figure 5.6 – Creating a new pipeline

3. The wizard for creating a build pipeline will appear. On the first screen, select Use
the classic editor to create a pipeline using the designer:

Figure 5.7 – Use the classic designer option

172 Running Quality Tests in a Build Pipeline

4. On the next screen, make sure that Azure Repos Git is selected. Keep the default
settings as they are and click Continue:

Figure 5.8 – Pipeline source settings

Running unit tests in a build pipeline 173

5. Next, we need to select a template. Select ASP.NET from the overview and click
Apply:

Figure 5.9 – Selecting the ASP.NET template

174 Running Quality Tests in a Build Pipeline

6. With that, the pipeline will be created. Various tasks are added to the pipeline by
default. We are going to use these tasks here. For this demo, we are going to focus
on the Test Assemblies task. Click on this task and make sure that version 2 is
selected. Under Test selection, you will see the following settings:

Figure 5.10 – Test selection settings

7. By default, Test assemblies will be selected under Select tests using. Keep that
selected. Since we want to run our unit tests automatically, this is the option we
need to choose. Unit tests are usually stored inside an assembly.

8. Also, by default, there are some assemblies already filled in. You can make changes
to them if needed. For this demo, we will keep the default settings as they are
because the task looks for assemblies in different folders that have test in them.
Our test project is called PartsUnlimited.UnitTests, so this will be picked up by
the task.

Running unit tests in a build pipeline 175

9. The search folder is the folder that's used to search for test assemblies. In this case,
this is the default working directory.

10. The test results folder is where test results are stored. The results directory will
always be cleaned before the tests are run.

11. We are now ready to run the test. Click on Save & queue from the top menu and
then again on the Save & queue sub-menu item to execute the build pipeline:

Figure 5.11 – Executing the build pipeline

176 Running Quality Tests in a Build Pipeline

12. The wizard for running the pipeline will open. Here, you can specify a comment
and then select an Agent Pool, Agent Specification, and which Branch/tag you
would like to use:

Figure 5.12 – Parameters for running a pipeline

13. Click Save and run to queue the pipeline.

Running unit tests in a build pipeline 177

The overview page of the job will be displayed, which is where you can view the
status of the execution:

Figure 5.13 – Overview of our jobs

14. After a couple of minutes, the pipeline will have completed. From the right-top
menu, under Tests and coverage, you will be able to see the pass percentage for the
tests for this build. You can click on this to navigate to the test results (alternatively,
you can navigate to it by clicking Tests from the top-left menu:

Figure 5.14 – Tests overview

178 Running Quality Tests in a Build Pipeline

15. On the Tests screen, you will see the number of tests you have, as well as the tests
that passed and failed. You can also see the duration of the run from here.

16. At the bottom of the screen, you can filter by specific tests. For instance, you can
filter for tests that have been Passed, Failed, and Aborted:

Figure 5.15 – Test results in more detail

Introduction to code coverage testing 179

In this demonstration, we have created a build pipeline that includes automatic unit
testing for our source code. In the next section, we are going to look at code coverage
testing.

Introduction to code coverage testing
With code coverage testing, you can measure what source code for an application is going
to be tested. Code coverage testing measures how many lines, blocks, and classes are
executed while automated tests, such as unit tests, are running.

The more code that's tested, the more confident teams can be about their code changes.
By reviewing the outcome of the code coverage tests, teams can identify what code is not
covered by these tests. This information is very helpful as it reduces test debt over time.

Azure DevOps supports code coverage testing from the build pipeline. The Test
Assemblies task allows us to collect code coverage testing results. There is also a separate
task, called Publish Code Coverage Results, that can also publish these results. This task
offers out-of-the-box support for popular coverage results formats such as Cobertura and
JaCoCo.

Important Note
Cobertura and JaCoCo are both Java tools that calculate the percentage of
code that's accessed by tests. For more information about Cobertura, you can
refer to https://cobertura.github.io/cobertura/. For more
information about JaCoCo, you can refer to https://www.eclemma.
org/jacoco/.

In the next section, we are going to look how to perform code coverage testing by using
Azure DevOps.

https://cobertura.github.io/cobertura/
https://www.eclemma.org/jacoco/
https://www.eclemma.org/jacoco/

180 Running Quality Tests in a Build Pipeline

Performing code coverage testing
To perform code coverage testing, we need to open the build pipeline that we created in
the previous demo. Let's get started:

1. With the build pipeline open, select the Edit button in the right-hand corner:

Figure 5.16 – Editing the pipeline from the previous demo

2. Navigate to the Test Assemblies task to open the settings.

Under Execution settings, check the Code coverage enabled box:

Figure 5.17 – Enabling code coverage testing

Performing code coverage testing 181

3. Now, Save and queue the build, specify a save comment, and wait until the pipeline
is fully executed. The Visual Studio Test task creates an artifact that contains
.coverage files that can be downloaded and used for further analysis in Visual
Studio.

4. After executing the pipeline, on the overview page of the build, select Code
Coverage from the top menu and click on Download code coverage results. A file
with the .coverage extension will be downloaded to your local filesystem.

5. Double-click the downloaded file so that it opens in Visual Studio. From here, you
can drill down into the different classes and methods to get an overview of the test
results:

Figure 5.18 – Code coverage testing results in Visual Studio

In this demonstration, we enabled code coverage testing from our build pipeline. In the
next section, we are going to assign these test results to the User Stories.

182 Running Quality Tests in a Build Pipeline

Assigning test results to work items
Once the test has run automatically and the build process has finished, you can assign the
results to work items that have been added to the backlog and sprint. For this, you must
perform the following steps:

1. Go back to the build pipeline and select the pipeline that ran last. Click Test from
the top menu.

2. For the results table, make sure that Passed is selected and that Failed and Aborted
have been deselected:

Figure 5.19 – Selecting all the passed tests

Assigning test results to work items 183

3. Then, select a couple of tests. After doing this, from the top menu, click Link:

Figure 5.20 – Linking the items

4. Search for As a tester and select the work item that is displayed as a search
result:

Figure 5.21 – Selecting the work item

5. Click Associate to link the work item to the test result.

184 Running Quality Tests in a Build Pipeline

6. Now, click on one of the test results that's linked to the work item. This will show
the details for this item. From here, you can click on work items from the top menu.
This will display the work item that we linked in the previous step:

Figure 5.22 – Linked work item

7. By clicking on that work item, you can look at its details.

In this demonstration, we covered how to link test results to work items. In the next
section, we are going to cover how to use Feature Flags to test in production.

Introduction to Feature Flags
You can use a Feature Flag to turn features in your code, such as specific methods or
sections in your code, on or off. This can be extremely helpful when you want to hide
(disable) and expose (enable) features in a solution. Features that are not complete and
ready for release yet can be hidden or exposed in the solution. This allows us to test
code in production for a subset of users. You can enable the code for a subset of users,
for instance, based on the login name of the user and let them test the features before
releasing them to others. However, there is a drawback to Feature Flags: they introduce
more complexity in your code, so it is better to constrain the number of toggles in your
application.

The recommended approach when creating Feature Flags is to keep them outside the
application. For instance, a web or app configuration file is a good place to add Feature
Flags because you can change them easily, without the need to redeploy the application
again.

In the next section, we are going to implement a Feature Flag in a .NET Core solution.

Using Feature Flags to test in production 185

Using Feature Flags to test in production
In this demonstration, we are going to create a new .NET Core application in Visual
Studio Code. Then, we are going to implement a Feature Flag for this application.

We are going to add a very basic Feature Flag that changes the welcome message from
Welcome to Welcome to Learn Azure DevOps. This is only going to be tested by a subset
of users. Therefore, we need to open Visual Studio Code and create a new Razor
application with .NET Core. I have created a new folder on my local filesystem called
FeatureFlags for this. Open this folder in Visual Studio Code. Check the next section
for the detailed steps.

Creating a new .NET Core application
To create a new .NET Core application, follow these steps:

1. With Visual Studio Code open, click on Terminal > New terminal from the top
menu.

2. In the Terminal, add the following line of code to create a new project:

dotnet new webapp -o RazorFeatureFlags

code -r RazorFeatureFlags

3. The newly created project will now open. Open the Terminal once more and add
the following line of code to test the project:

dotnet run

The output of running this code will look as follows:

Figure 5.23 – Output in the Terminal

186 Running Quality Tests in a Build Pipeline

4. Navigate to the .NET Core application by clicking on one of the localhost URLs in
the Terminal output. You will then see the following:

Figure 5.24 – Running the new project

5. The next step is to add the Microsoft.FeatureManagement NuGet package to
the project. Therefore, add the following line of code to the Terminal:

dotnet add package Microsoft.FeatureManagement

6. Once the package has been installed, open the Program.cs class and add the
following using statement:

using Microsoft.FeatureManagement;

7. Now, open the appsettings.json file. We are going create a
FeatureManagement section in this file. Replace the code inside the file with the
following:

 {

 'Logging': {

 'LogLevel': {

 'Default': 'Information',

 'Microsoft': 'Warning',

 'Microsoft.Hosting.Lifetime': 'Information'

 }

 },

 'FeatureManagement': {

 'ChangeBanner': false

 },

 'AllowedHosts': '*'

}

Using Feature Flags to test in production 187

8. Then, open the Startup.cs class. Here, add the using statement again and add
the following to the ConfigureServices method:

public void ConfigureServices(IServiceCollection
services)

 {

 //...

 services.AddFeatureManagement();

 }

9. Now, we can inject this into a controller, for instance. Open the code behind the
home page of the application, which can be found in the Index.cshtml.cs file,
and add the using statement again. Then, replace the IndexModel class with the
following code:

public class IndexModel : PageModel

 {

 private readonly IFeatureManager _featureManager;

 public IndexModel(IFeatureManager featureManager)

 {

 _featureManager = featureManager;

 }

 public static string WelcomeMessage { get; set; }

 public async Task OnGetAsync()

 {

 WelcomeMessage = await _featureManager.
IsEnabledAsync('ChangeBanner') ? 'Welcome to Learn Azure
DevOps' : 'Welcome';

 }

 }

}

188 Running Quality Tests in a Build Pipeline

10. The Index.cshtml.cs class will look as follows:

Figure 5.25 – Overview of the Index.cshtml.cs file

11. Finally, open the Index.cshtml file and replace the code inside it with the
following:

<div class='text-center'>

 <h1 class='display-4'>@IndexModel.WelcomeMessage</h1>

 <p>Learn about <a href='https://docs.microsoft.com/aspnet/
core'>building Web apps with ASP.NET Core.</p>

</div

Summary 189

12. This will inject the welcome message into the web page.

13. Build and run the code by opening a new Terminal window and adding the
following line of code to the Terminal:

dotnet run

14. Let the application open in the browser and open the appsettings.json
file again in Visual Studio Code. Change the ChangeBanner Feature Flag to
true and reload the website in your browser by pressing F5. This will result in the
following output:

Figure 5.26 – Welcome message changed based on the Feature Flag provided

In this demonstration, we added some Feature Flags to our application using the
Featuremanagement NuGet package of Microsoft. Using these Feature Flags, we
changed the welcome message for the home page of the application. This concludes this
chapter.

Summary
In this chapter, we covered how to run quality tests in a build pipeline in more depth.
With this, you can now run unit tests from the build pipeline and execute coverage tests
from Azure DevOps. Lastly, we covered how to create Future Flags inside an application
that you can use in your future projects as well.

In the next chapter, we are going to focus on how to host build agents in Azure Pipelines.

190 Running Quality Tests in a Build Pipeline

Further reading
Check out the following links for more information about the topics that were covered in
this chapter:

• Unit test basics: https://docs.microsoft.com/en-us/visualstudio/
test/unit-test-basics?view=vs-2019

• Run quality tests in your build pipeline by using Azure Pipelines: https://docs.
microsoft.com/en-us/learn/modules/run-quality-tests-build-
pipeline/

• Explore how to progressively expose your features in production for some or all
users: https://docs.microsoft.com/en-us/azure/devops/migrate/
phase-features-with-feature-flags?view=azure-devops

https://docs.microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2019
https://docs.microsoft.com/en-us/learn/modules/run-quality-tests-build-pipeline/
https://docs.microsoft.com/en-us/learn/modules/run-quality-tests-build-pipeline/
https://docs.microsoft.com/en-us/learn/modules/run-quality-tests-build-pipeline/
https://docs.microsoft.com/en-us/azure/devops/migrate/phase-features-with-feature-flags?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/migrate/phase-features-with-feature-flags?view=azure-devops

6
Hosting Your Own

Azure Pipeline Agent
In the previous two chapters, we looked at setting up continuous integration through
Azure Pipelines while using Microsoft-hosted agents. In this chapter, we'll be building
a self-hosted agent and updating the pipeline to use our own agent, rather than using the
Microsoft-hosted one.

We will first look at the types of pipeline agents available and then dive into the technical
specifications of setting up the agent pools. We will also look at how you can use VM scale
sets for large-scale Azure DevOps projects.

We'll be covering the following topics:

• Azure pipeline agent overview

• Understanding the types of agents in Azure Pipelines

• Planning and setting up your own pipeline agent in Azure

• Updating your Azure pipeline to use your self-hosted agent

• Using containers as your self-hosted agents

• Planning for scale – using Azure VM scale sets as self-hosted agents

192 Hosting Your Own Azure Pipeline Agent

Technical requirements
To follow this chapter, you need to have an active Azure DevOps organization and an
Azure subscription to create a VM.

Getting the project pre-requisites ready: This section requires you to have the
PartsUnlimited project ready in your own DevOps organization. If you are continuing
from the previous chapter, Chapter 5, Running Quality Tests in a Build Pipeline, you should
have it already.

If you do not have the project ready in your DevOps org, you can import it using
Azure DevOps Demo Generator – https://azuredevopsdemogenerator.
azurewebsites.net/:

1. Log in to the Azure DevOps Demo Generator website.

2. Enter a project name and select your DevOps organization.

3. Click on Choose Template and find PartsUnlimited.

4. Once you're ready, click Create Project:

Figure 6.1 – Creating a sample DevOps project
It will take a couple of minutes for the project to be imported; you can monitor the
progress using the progress bar displayed.

5. Upon completion, click on Navigate to project:

https://azuredevopsdemogenerator.azurewebsites.net/
https://azuredevopsdemogenerator.azurewebsites.net/

Azure pipeline agent overview 193

Figure 6.2 – Project successfully created

We'll be using this project throughout this chapter.

Azure pipeline agent overview
An Azure pipeline agent is the component responsible for executing the tasks defined in
the pipeline definition. This agent typically runs inside a VM or container and includes
the pre-requisites required for the pipeline to run successfully.

In most cases, you'll need to have an agent in order to run the pipeline. As your project
size and the number of developers grows, you will need to have more agents to support
the scale.

Each execution of a pipeline initiates a job on one of the agents, and one agent can only
run one job at a time. Azure pipeline agents can be hosted in the cloud or on-premises
in one of the following compute infrastructures:

• Server or client host (physical or virtual)

• Containers

• Azure VM scale sets (preview)

Azure pipeline agents are grouped into agent pools. You can create as many agent pools
as you require.

194 Hosting Your Own Azure Pipeline Agent

Important note
Azure Pipelines supports running basic tasks, such as invoking the REST
API or Azure Function without the need to have any agents. Please
refer to https://docs.microsoft.com/en-us/azure/
devops/pipelines/process/phases?view=azure-
devops&tabs=yaml#server-jobs for more details about agentless
execution of Azure Pipelines.

Understanding the types of agents in Azure
Pipelines
Azure Pipelines offers two types of agents:

• Microsoft-hosted agents

• Self-hosted agents

Let's look at them in detail.

Microsoft-hosted agents
Microsoft-hosted agents are fully managed VMs, deployed and managed by Microsoft.
You can choose to use a Microsoft-hosted agent with no additional pre-requisites
or configurations. Microsoft-hosted agents are the simplest and are available at no
additional cost.

Every time you execute a pipeline, you get a new VM for running the job, and it's
discarded after one use.

Self-hosted agents
Self-hosted agents are servers owned by you, running in any cloud platform or data center
owned by you. Self-hosted agents are preferred due to various reasons, including security,
scalability, and performance.

You can configure your self-hosted agent to have the dependencies pre-installed, which
will help you decrease the time for your pipeline execution.

https://docs.microsoft.com/en-us/azure/devops/pipelines/process/phases?view=azure-devops&tabs=yaml#server-jobs
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/phases?view=azure-devops&tabs=yaml#server-jobs
https://docs.microsoft.com/en-us/azure/devops/pipelines/process/phases?view=azure-devops&tabs=yaml#server-jobs

Planning and setting up your self-hosted Azure pipeline agent 195

Choosing between a Microsoft-hosted agent and self-hosted agents depends on various
factors, such as the following:

• The size of the code base

• The number of developers

• The build and release frequency

• The dependencies and packages required for the build process

• Security and compliance requirements

• Performance

If your code base is small and the build pipeline is optimized, it's better to use
Microsoft-hosted agents as it won't take much time to download all the dependencies on
the fly. However, if you have a large code base with numerous amounts of dependencies,
using a self-hosted agent will be a better option as you can eliminate various build
pre-creation tasks from the pipeline by configuring them in your self-hosted environment
in advance. Self-hosted agents would be the only option in the case of highly secure and
customized build pipelines that interact with other services running in your network. If
you need more CPU and memory than what is provided with Microsoft-hosted agents,
you can use self-hosted agents with your customized sizing.

It is recommended to start with Microsoft-hosted agents and move to self-hosted at
a later stage when the Microsoft-hosted agents become a bottleneck in your build and
release process.

Planning and setting up your self-hosted Azure
pipeline agent
In order to use a self-hosted agent with Azure Pipelines, you will need to set up a machine
and configure it for your pipeline requirements. Typically, you would choose an OS
version best suited for your project, considering the framework, libraries, and build tools
compatibility.

For the purpose of this demonstration, we'll be setting up a VM in Azure and will
configure it to use a self-hosted agent. You can choose to host your agent server in any
cloud or on-premises environment.

196 Hosting Your Own Azure Pipeline Agent

Choosing the right OS/image for the agent VM
The first decision you take while setting up the VM is choosing the OS/image for the
server depending on your target deployment. If you are deploying in an on-premises
environment, you may just select one of the supported OS versions (such as Windows
Server 2016) and install the necessary software. In the case of cloud deployments,
you have multiple options provided in the form of images, which come in various
combinations of OS version and pre-installed tools.

It is advised that you have the agent VM specifications planned with your developers to
have them best suited for your project needs. Here is a recommended approach:

1. Identify whether your application is built to run on Windows, Linux, or macOS. If
it's cross-platform, choose the one that runs it best and has support for the build
tools you're using.

2. List down the underlying frameworks and external libraries/components used with
their versions.

3. Select the latest version of the OS version from the top-level OS selected in step 1.

4. Identify whether it is compatible and supported by the original equipment
manufacturers (OEMs) for all the dependencies listed in step 2.

5. Keep going one version down at a time and select the one that is compatible for all
the required dependencies for your project.

Based on the specifications identified in this process, you can choose to start with a vanilla
OS and install your required frameworks and build tools, or choose a pre-created image in
the cloud.

OS support and pre-requisites for installing an Azure
Pipelines agent
Azure supports various OS versions to use as a self-hosted agent; based on the OS you
choose, there is a set of pre-requisites you'll need to complete before you can install the
Azure Pipelines agent on your host.

Planning and setting up your self-hosted Azure pipeline agent 197

Supported OSes
The following list shows the supported OSes:

• Windows-based:

 a) Windows 7, 8.1, or 10 (if you're using a client OS)

 b) Windows Server 2008 R2 SP1 or higher (Windows Server OS)
• Linux-based:

 a) CentOS 7, 6

 b) Debian 9

 c) Fedora 30, 29

 d) Linux Mint 18, 17

 e) openSUSE 42.3 or later

 f) Oracle Linux 7

 g) Red Hat Enterprise Linux 8, 7, 6

 h) SUSE Enterprise Linux 12 SP2 or later

 i) Ubuntu 18.04, 16.04
• ARM32:

 a) Debian 9

 b) Ubuntu 18.04
• macOS-based:

 a) macOS Sierra (10.12) or higher

198 Hosting Your Own Azure Pipeline Agent

Pre-requisite software
Based on the OS you choose, you will have to install the following pre-requisites before
you can set up the host as an Azure pipeline agent:

• Windows-based:

 a) PowerShell 3.0 or higher

 b) .NET Framework 4.6.2 or higher
• Linux/ARM/macOS-based:

 a) Git 2.9.0 or higher.

 b) RHEL 6 and CentOS 6 require installing the specialized RHEL.6-x64 version of
the agent.

The agent installer for Linux includes a script to auto-install the required pre-requisite.
You can complete the pre-requisite by running ./bin/installdependencies.sh ,
which is available in the downloaded agent directory. The downloading of the agent is
covered in the following sections of this chapter.

Important note
Please note that the preceding pre-requisites are just to install the Azure
Pipelines agent on the host; based on your application development
requirements, you may need to install additional tools, such as Visual Studio
build tools, a Subversion client, and any other frameworks that your application
might need.

Now that we have understood the pre-requisites, we will create an agent VM for our
sample project, PartsUnlimited.

Creating a VM in Azure for your project
The PartsUnlimited project is built using .NET Framework 4.5 and Visual Studio as
the primary IDE tool. You can review that by browsing through the repository in the
PartsUnlimited project in your Azure DevOps.

Looking at that, our best bet would be to use a Visual Studio-based server OS. Let's look
in Azure to explore our options here:

1. Log in to the Azure portal and click + Create a resource.

2. Search for Visual Studio and select the Visual Studio images for Azure option:

Planning and setting up your self-hosted Azure pipeline agent 199

Figure 6.3 – Visual Studio in the Azure portal

3. Now, you'll be able to select from the various combinations available. We'll go with
Visual Studio community 2017 on Windows Server 2016(x64):

Figure 6.4 – Visual Studio images available in Azure

200 Hosting Your Own Azure Pipeline Agent

Important note
Visual Studio 2019-based images are available in the Azure portal directly in
the search results.

4. Click Create to start creating a VM. Choose the required subscription, resource
group, and other settings based on your preference.

5. In further pages, you can modify the settings to use a pre-created virtual network,
as well as customize the storage settings and other management aspects. Please
review the documentation to explore more on VM creation in Azure.

Important note
Please follow the Microsoft docs to learn more about creating a VM in Azure:
https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/quick-create-portal.

6. Log in to the VM upon creation and install the required pre-requisites.

Now that we have the VM ready, we'll set it up as an Azure Pipelines agent for our project.

Setting up the build agent
In this section, we'll configure the newly created VM to use as a self-hosted pipeline agent.

Setting up the agent pool in Azure DevOps
You can organize your agents in Azure DevOps as agent pools. Agent pools are a
collection of your self-hosted agents; they help you organize and manage the agents at the
pool level, rather than managing them individually.

Agent pools are managed at the organization level and can be used by multiple projects
at the same time. Let's create an agent pool to get started:

1. Log in to Azure DevOps and click on Organization settings:

Figure 6.5 – Azure DevOps Organization settings

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/quick-create-portal
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/quick-create-portal

Planning and setting up your self-hosted Azure pipeline agent 201

2. Click on Agent pools under Pipelines:

Figure 6.6 – Azure DevOps Agent pools

3. You will see that there are two default agent pools created. Click on Add pool to
create a new pool:

Figure 6.7 – Azure DevOps – adding an agent pool

4. Provide the pool type, name, description, and pipeline permissions. Under the
permissions option, you can choose to make this pool available to all pipelines and
projects at once. Click Create once you're ready:

a) --Pool type: Self-hosted

202 Hosting Your Own Azure Pipeline Agent

b) --Name and Description: Give a meaningful name that you can use to refer to
later:

Figure 6.8 – Azure DevOps – adding agent pool configuration

5. Your agent pool should be listed under Agent pools now.

We will now set up an access token for the agent VM to be able to authenticate with Azure
DevOps.

Setting up an access token for agent communication
In this task, you will create a personal access token that will be used by the Azure Pipelines
agent to communicate with your Azure DevOps organization:

1. Sign in to your Azure DevOps organization with the admin user account.

2. Go to your user profile and click Personal access tokens:

Planning and setting up your self-hosted Azure pipeline agent 203

Figure 6.9 – Personal access token

3. Click on New token.

4. Provide the token specifications as given here:

--Name: Self-Hosted Agent Token.

--Organization: Your Azure DevOps organization.

--Expiration: You can choose a date as per your choice. This is only for a one-time
setup; you do not need to re-configure the agent once this token expires.

--Scope: Custom defined.

5. On Scope, it is recommended to only give the permissions required to manage
the agents. Click on Show all scope and select both the Read and Read & manage
permissions:

Figure 6.10 – Agent pool access

204 Hosting Your Own Azure Pipeline Agent

6. Review all the settings and click Create:

Figure 6.11 – Creating a personal access token for the agent pool

7. Once you click Create, Azure DevOps will display the personal access token. Please
copy the token and save it in a secure location. If you happen to lose this token, you
must create a new token for setting up new agents.

Planning and setting up your self-hosted Azure pipeline agent 205

We will use this token when setting up the Azure Pipelines agent.

Important note
You will need to give additional permissions when creating a token if you
plan to use deployment groups (more information here: https://
docs.microsoft.com/en-us/azure/devops/pipelines/
release/deployment-groups/?view=azure-devops).

Now that we have completed the agent pool setup in Azure DevOps, we can start
installing the agent in the VM we created earlier.

Installing Azure Pipelines agents
You are now ready to install the Azure Pipelines agent on your VMs that you created
earlier. Let's download the Azure Pipelines agent. Before you start, please log in to the
VM created earlier using Remote desktop:

1. In your Azure DevOps account, browse to Organization Settings > Agent Pools.

2. Select your newly created agent pool and click on New agent:

Figure 6.12 – Add agent

https://docs.microsoft.com/en-us/azure/devops/pipelines/release/deployment-groups/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/release/deployment-groups/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/release/deployment-groups/?view=azure-devops

206 Hosting Your Own Azure Pipeline Agent

3. On the next page, you can download the agent installer based on the OS and
architecture (x64/x32). In our example, we're using a Windows Server 2016-
based VM. We'll choose Windows and the x64 architecture. You can also copy the
download URL and use it to download the agent directly inside your self-hosted
agent machine. You can also choose to follow the installation steps given in the
Azure DevOps portal based on the OS for your agent machine:

Figure 6.13 – Agent commands

Tip
If you are unable to download the agent file on your Visual Studio machine,
you can use a different browser than Internet Explorer or disable Enhanced IE
Security configuration from the server manager. You can refer to https://
www.wintips.org/how-to-disable-internet-explorer-
enhanced-security-configuration-in-server-2016/ to
learn how to disable enhanced Internet Explorer security configuration.

https://www.wintips.org/how-to-disable-internet-explorer-enhanced-security-configuration-in-server-2016/
https://www.wintips.org/how-to-disable-internet-explorer-enhanced-security-configuration-in-server-2016/
https://www.wintips.org/how-to-disable-internet-explorer-enhanced-security-configuration-in-server-2016/

Planning and setting up your self-hosted Azure pipeline agent 207

4. Launch an elevated PowerShell window and change to the C: directory root by
running the cd C:\ command:

Figure 6.14 – Change directory

5. Run the following PowerShell commands to create an agent directory on the C drive
and extract the agent files to the new directory. Please note that you may have to
change the filename/path depending on the version of the agent you've downloaded
and the directory where you saved the downloaded file:

mkdir agent ; cd agent

Add-Type -AssemblyName System.IO.Compression.
FileSystem ; [System.IO.Compression.
ZipFile]::ExtractToDirectory("$HOME\Downloads\vsts-agent-
win-x64-2.171.1.zip", "$PWD")

6. It will take a minute or two to extract the files. Please browse to the new directory
once it's completed. You should see files as displayed in the following screenshot:

Figure 6.15 – Agent files

208 Hosting Your Own Azure Pipeline Agent

7. You can run the Azure pipeline agent in two modes:

--Run Once: This will run the agent manually using the run batch file stored in
the agent directory. Your agent will stop responding to pipelines if you stop the
interactive authentication.

--Run as Service: In this version, you configure the agent to run as a Windows
service that will remain online all the time and auto-start on reboot. This is the
recommended setup for production scenarios.

8. Let's configure the agent to run as a service. In your PowerShell window, run
.\config.cmd.

This will ask a series of questions about your Azure DevOps organization.

9. Enter your Azure DevOps organization as the server URL. Typically, this would be
https://dev.azure.com/YourOrganizationName.

10. Press Enter to select PAT (Personal access token) as the authentication mechanism
for Azure DevOps.

11. Provide your personal access token generated earlier.

12. Provide the agent pool name you created earlier.

13. Provide a name for this agent.

14. Provide a working directory for the agent to choose as default.

15. Finally, press Y and hit Enter to configure to run the agent as a Windows service.

16. You can accept the default account to run the service.

17. This will complete the agent setup; at the end, you should see a message stating that
the services are started successfully:

https://dev.azure.com/YourOrganizationName

Planning and setting up your self-hosted Azure pipeline agent 209

Figure 6.16 – Installing the agent

Now, if you look under your agent pool in the Azure DevOps portal, you should see this
agent listed:

Figure 6.17 – Azure Pipelines agent listed

210 Hosting Your Own Azure Pipeline Agent

You now have a ready-to-use, self-hosted agent for your Azure pipelines! This self-hosted
agent can be used to run your Azure pipeline jobs, and you can add as many agents as you
want in a similar fashion. You may have various types of hosted agents in one pool; the
appropriate agent for the job is automatically selected based on the pipeline requirements,
or you can select an agent specifically at execution time. Typically, in a large environment,
you'd pre-create an image of an agent server so that it is faster to provision additional
agents whenever needed. In the next section, we will update our pipeline to leverage
this newly set-up self-hosted agent. Please refer to this documentation if you wish to use
a Linux-based hosted agent: https://docs.microsoft.com/en-us/azure/
devops/pipelines/agents/v2-linux?view=azure-devops.

Refer to the following link for macOS-based agents: https://docs.microsoft.
com/en-us/azure/devops/pipelines/agents/v2-osx?view=azure-
devops.

Important note
If your self-hosted agent machine is behind a network firewall or proxy, you
must define the proxy address while installing the Azure pipeline agent. You
can do that by specifying the proxy URL, username, and password with a
config command:

./config.cmd --proxyurl http://127.0.0.1:8888
--proxyusername "myuser" --proxypassword "mypass"

Updating your Azure pipeline to use self-
hosted agents
In this section, we'll take the Azure pipeline scenario covered in the last chapters
(PartsUnlimited) and modify it to use our newly created self-hosted agent. This
will enable us to use our self-hosted agent to run the pipelines, rather than using
Microsoft-provided agents.

https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/v2-linux?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/v2-linux?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/v2-osx?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/v2-osx?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/v2-osx?view=azure-devops

Updating your Azure pipeline to use self-hosted agents 211

Preparing your self-hosted agent to build the Parts
Unlimited project
Before we can start using the self-hosted agent, we must prepare it to support building our
sample project, PartsUnlimited. The PartsUnlimited project is built using Visual Studio
leveraging .NET Framework, Azure development tools and .NET Core, Node.js, and so
on. In order to use our self-hosted agent for building the solution, we must install the
required dependencies prior to running the pipeline jobs:

1. Log in to your self-hosted agent VM.

2. Download the Visual Studio build tools with this link: https://
visualstudio.microsoft.com/thank-you-downloading-visual-
studio/?sku=BuildTools&rel=16.

 This will launch Visual Studio Installer.

3. Select ASP.Net and Web Development and Azure Development.

4. Click Modify. This will start installing the required framework and tools.

5. Once this is completed, please download and install .NET Core 2.2. You can
download it from this link: https://dotnet.microsoft.com/download/
dotnet-core/thank-you/sdk-2.2.110-windows-x64-installer.

You can find all the .NET downloads here: https://dotnet.microsoft.
com/download.

6. Install Azure PowerShell by running the following commands in an elevated
PowerShell window:

[Net.ServicePointManager]::SecurityProtocol = [Net.
SecurityProtocolType]::Tls12

Install-Module AzureRM -AllowClobber

7. Install Node.js version 6.x from https://nodejs.org/download/release/
v6.12.3. You can download the file named node-v6.12.3-x64.msi and
install it using the interactive installer.

Your host is now ready to build the PartsUnlimited solution.

https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=BuildTools&rel=16
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=BuildTools&rel=16
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=BuildTools&rel=16
https://dotnet.microsoft.com/download/dotnet-core/thank-you/sdk-2.2.110-windows-x64-installer
https://dotnet.microsoft.com/download/dotnet-core/thank-you/sdk-2.2.110-windows-x64-installer
https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download
https://nodejs.org/download/release/v6.12.3
https://nodejs.org/download/release/v6.12.3

212 Hosting Your Own Azure Pipeline Agent

Running the Azure pipeline
In this task, we'll now run the pipeline job to build the PartsUnlimited solution using our
own self-hosted agents:

1. Log in to the Azure DevOps portal and browse to the PartsUnlimited project.

2. Browse to Pipelines:

Figure 6.18 – Azure Pipelines

3. Open the pre-created pipeline named PartsUnlimitedE2E.

4. Click on Edit Pipeline.

5. In the pipeline, change the agent pool to your newly created agent pool:

Updating your Azure pipeline to use self-hosted agents 213

Figure 6.19 – Selecting an agent pool for the pipeline

6. Save the pipeline. You can also choose to run it after saving by selecting Save &
queue:

Figure 6.20 – Saving the pipeline

214 Hosting Your Own Azure Pipeline Agent

7. Now, we are ready to execute the pipeline. Click on Run pipeline:

Figure 6.21 – Running the pipeline

8. Under Agent pool, change the pool name to the agent pool you configured in the
previous section and click Run:

Figure 6.22 – The Run pipeline wizard

Using containers as self-hosted agents 215

9. This will start executing the pipeline job on your self-hosted agent. This may take a
few minutes to complete:

Figure 6.23 – The Azure pipeline Jobs logs

10. You can click on the job name to view the logs in real time.

You've now completed setting up an Azure pipeline, which is using a VM-based self-
hosted pipeline agent for running the jobs.

Using containers as self-hosted agents
Azure Pipelines supports using Docker containers as the compute target for running
pipeline jobs. You can use both Windows containers (Windows Server Core/Nano Server)
and Linux containers (Ubuntu) to host your agents.

In order to connect the container to your Azure DevOps organization, you'll need to
pass a few environment variables, such as the agent pool name, personal access token,
and so on.

Setting up Windows containers as Azure pipeline
agents
In order to use Windows containers as Azure pipeline agents, you need to build the
container image first and then run it with your Azure DevOps organization environment
variables. Let's look at the process.

Building the container image
Follow these steps to build the container image:

1. Launch Command Prompt and run the following commands:

mkdir C:\dockeragent

cd C:\dockeragent

216 Hosting Your Own Azure Pipeline Agent

2. Create a new file named Dockerfile (no extension) and update it with the
following content. You can use Notepad to open the file:

FROM mcr.microsoft.com/windows/servercore:ltsc2019

WORKDIR /azp

COPY start.ps1 .

CMD powershell .\start.ps1

3. Create a new PowerShell file with the name start.ps1 and copy the content
from here: https://github.com/PacktPublishing/Learning-Azure-
DevOps---B16392/blob/master/Chapter-6/start.ps1.

4. Run the following command to build the container image:

docker build -t dockeragent:latest.

Your container image is now ready to use. You can use dockeragent as the image name
to refer to this image. Optionally, you can save this image in your container repository.

Running the Azure Pipelines agent container
Now that you have a container image ready, you can use it as the pipeline agent by
running the container.

Launch a Command Prompt window and run the following command. Be sure to update
the Azure DevOps organization URL, token, and agent name:

docker run -e AZP_URL=<Azure DevOps instance> -e AZP_TOKEN=<PAT
token> -e AZP_AGENT_NAME=mydockeragent dockeragent:latest

Your container-based Azure pipeline agent is now ready to use. If you want to use
a container for one job and re-create it every time, you can use the –-once flag to use
one container for running one job only and use a container orchestrator such as
Kubernetes to re-create the container as soon as it finishes executing the current job.

Important note
Refer to the Microsoft docs – https://docs.microsoft.com/
en-us/virtualization/windowscontainers/about/ – for
additional details about Windows containers.

https://github.com/PacktPublishing/Learning-Azure-DevOps---B16392/blob/master/Chapter-6/start.ps1
https://github.com/PacktPublishing/Learning-Azure-DevOps---B16392/blob/master/Chapter-6/start.ps1
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/

Using containers as self-hosted agents 217

In the next section, we'll take a look at setting up Linux-based containers as Azure
Pipelines agents.

Setting up Linux containers as Azure Pipelines agents
In order to use Linux containers as Azure pipeline agents, you can either use the Docker
image published by Microsoft on Docker Hub or build your own Docker image.

Microsoft's Azure pipeline agent image is available here: https://hub.docker.
com/_/microsoft-azure-pipelines-vsts-agent. You can directly run this
image with environment variables, including information about your Azure DevOps
organization:

docker run \

 -e VSTS_ACCOUNT=<name> \

 -e VSTS_TOKEN=<pat> \

 -it mcr.microsoft.com/azure-pipelines/vsts-agent

Alternatively, you can also choose to build your own Docker image to use for your
Pipelines agents. The process is similar to building an image for Windows containers.
Please refer to the Microsoft docs here – https://docs.microsoft.com/en-us/
azure/devops/pipelines/agents/docker?view=azure-devops – for
reference to the entry point script.

Using Azure Container Instances as agents
Azure Container Instances (ACI) is a managed service to run Windows and Linux
containers in the Azure cloud. If standard Microsoft-hosted agents don't fit your needs
(requirements, performances, and so on) and you do not have sufficient infrastructure
to host the container on-premises, you can use ACI to create a self-hosted agent for
Azure DevOps.

You can create a build agent running on ACI by using a custom image or reusing one of
Microsoft's images that are available.

You'll need the Azure DevOps account name, personal access token, and agent name
to run an Azure pipeline agent in ACI. When you have the required details, you can
create an agent on ACI by executing the following command from the Azure CLI
(after connecting to your Azure subscription):

az container create -g RESOURCE_GROUP_NAME -n CONTAINER_NAME
--image mcr.microsoft.com/azure-pipelines/vsts-agent --cpu 1
--memory 7 --environment-variables VSTS_ACCOUNT=AZURE_DEVOPS_

https://hub.docker.com/_/microsoft-azure-pipelines-vsts-agent
https://hub.docker.com/_/microsoft-azure-pipelines-vsts-agent
https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/docker?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/agents/docker?view=azure-devops

218 Hosting Your Own Azure Pipeline Agent

ACCOUNT_NAME VSTS_TOKEN=PERSONAL_ACCESS_TOKEN VSTS_AGENT=AGENT_
NAME VSTS_POOL=Default

Here, we have the following:

• RESOURCE_GROUP_NAME is the name of your resource group in Azure where you
want to create this resource.

• CONTAINER_NAME is the name of the ACI container name.

• AZURE_DEVOPS_ACCOUNT_NAME is the name of your Azure DevOps account.

• PERSONAL_ACCESS_TOKEN is the personal access token previously created.

• AGENT_NAME is the name of the build agent that you want to create and that will be
displayed on Azure DevOps.

In this command, there are also other two important parameters:

• The --image parameter is used to select the name of the Azure Pipelines image
for creating your agent, as described here: https://hub.docker.com/_/
microsoft-azure-pipelines-vsts-agent.

• The VSTS_POOL parameter is used to select the agent pool for your build agent.

Remember that you can start and stop an ACI instance by using the az container
stop and az container start commands, and this can help you save money.

Let's take a look at some of the additional environment variables you can use with Azure
pipeline agent-based containers.

Environment variables
Azure DevOps pipeline agents running on containers can be customized further by using
additional environment variables. The environment variables and their purposes are
described as follows:

• AZP_URL: The URL of the Azure DevOps organization

• AZP_TOKEN: Personal access token

• AZP_AGENT_NAME: The name of your Azure pipeline agent

• AZP_POOL: Agent pool name (default value is Default)

• AZP_WORK: Work directory (default value is _work)

https://hub.docker.com/_/microsoft-azure-pipelines-vsts-agent
https://hub.docker.com/_/microsoft-azure-pipelines-vsts-agent

Using containers as self-hosted agents 219

In this section, we learned about using containers as your Azure pipeline agents for
executing your pipeline jobs.

Planning for scale – Azure VM scale sets as
Azure pipeline agents
Azure VM scale sets are an Azure service that allow you to create and manage hundreds
of identical VMs with the ability to automatically or manually scale the number of VMs.
Azure VM scale sets can be used as Azure pipeline agents in a large-scale project where
you need elastic capacity based on your Azure pipeline job execution workload.

Azure VM scale sets support up to 1,000 VMs in one scale set.

Planning for scale
Azure VM scale set-based agents can be auto-scaled based on your Azure Pipelines jobs
demand at a given time. There are several reasons why scale set agents can be a better
option, rather than using dedicated agents:

• You need more computer power (CPU and memory) at a certain time and this
requirement fluctuates based on workload.

• Microsoft-hosted agents are not able to meet your pipeline requirements.

• Your job runs for a long time or takes time to complete.

• You wish to use the same agent for various jobs consecutively to take advantage of
caching and so on.

• You don't want to run dedicated agents all the time as these incur costs.

• You want to regularly update the image of VMs running jobs.

Azure VM scale sets can automatically increase/decrease the number of pipeline agents
available based on the current demand of Azure Pipelines. This helps you save money,
as well as supports your scaling requirements.

220 Hosting Your Own Azure Pipeline Agent

Creating an Azure VM scale set
In this section, we'll create an Azure VM scale set to use as an Azure pipeline agent. Please
note that Azure Pipelines requires the scale set to be created with certain configurations,
so you may not be able to use an existing scale set:

1. Log in to the Azure portal and click on + Create a resource.

2. Search for Virtual machine scale set:

Figure 6.24 – A VM scale set in the Azure portal

3. Click Create.

4. Fill in the values as described here:

--Subscription: Choose the subscription on which you wish to deploy this scale set.

--Resource group: Choose an existing resource group or create a new one.

--Virtual machine scale set name: Identifier of your choice.

--Region: The Azure region of your choice; it is recommended to choose the one
closest to you.

--Availability zone: Recommended to choose all three for high availability.

--Image: Choose a supported Windows or Linux image for the Azure Pipelines
agent.

--Azure Spot instance: Can help in minimizing cost. Refer to https://azure.
microsoft.com/en-us/pricing/spot/ for details.

--Size: The VM size for your agents.

https://azure.microsoft.com/en-us/pricing/spot/
https://azure.microsoft.com/en-us/pricing/spot/

Using containers as self-hosted agents 221

--Authentication: Username/password or SSH key:

Figure 6.25 – Creating a VM scale set

5. Click Next: Disks >.

6. You can customize the disk performance tier and encryption settings, and add
additional disks if required. If you're unsure, accept the defaults and click Next.

222 Hosting Your Own Azure Pipeline Agent

7. On the networking page, you can choose to connect the scale set to an existing
virtual network if your scale set needs to access any of your network resources
securely. Please ensure that Use a load balancer is set to No for the Azure Pipelines
scale set. Once configured, click Next:

Figure 6.26 – Azure VM scale set load balancing settings

8. On Scaling, provide an initial instance count and keep Scaling policy to Manual.
Leave the other settings as the default and click Next:

Figure 6.27 – Scale set settings

9. On Management, ensure that Upgrade mode is set to Manual. Leave the other
settings as the default and click Next:

Figure 6.28 – Scale set upgrade policy

Using containers as self-hosted agents 223

10. On the Health and Advanced Setting page, optionally change any settings you want
to customize for your environment. Click Review and Create once you're ready to
start creating the scale set.

11. Once the validation is successful, click Create to start the deployment.

It may take a few minutes for the deployment to complete. Please wait while the
deployment finishes. One the VM scale set is ready, we'll set it up to be used as an Azure
Pipelines agent.

Setting up Azure pipeline agents with VM scale set
In the last section, we created a VM scale set. Now, we will set that up as an Azure pipeline
agent:

1. Log in to your Azure DevOps organization and browse to Project Settings > Agent
Pools.

2. Click on Add Pool.

3. Fill in the values as defined here:

--Pool Type: Virtual machine scale set

--Project for Service Connections: Choose your Azure DevOps project

--Azure Subscription: Select the Azure subscription where you created the VM
scale set:

Figure 6.29 – Adding an agent pool for the scale set

224 Hosting Your Own Azure Pipeline Agent

4. Click Authorize to enable access to your Azure subscription. You may be asked to
log in to your Azure account in this process.

5. Once authenticated, select an existing VM scale set and fill in the values as
described here:

--The name and description of your choice for this agent pool.

--Optionally, configure the scale set to delete the VM after each execution.

--The maximum number of VMs.

--The number of agents to keep as standby. While this can help you in completing
jobs quickly, it may increase your Azure cost.

6. Click Create once you have filled in all the values:

Figure 6.30 – Creating a scale set-based agent pool

Summary 225

7. Your agent pool creation will now start. Please note that it may take around 15
minutes before your agent pool is ready to take up the jobs. You should see the
agents live in your agent pool upon completion:

Figure 6.31 – Agents

Once your agent pool is ready, you can update your Azure pipeline to start using this pool
for job execution.

Summary
In this chapter, we looked at using Microsoft-hosted agents and self-hosted agents to run
your Azure pipeline jobs. We dug deep into the process of setting up a self-hosted agent
and updated our pipelines to use the self-hosted agent.

We also looked at how you can use Docker containers, Azure container instances, and
Azure VM scale sets as your Azure pipeline agents. With this chapter, you should be able
to plan and implement the appropriate pipeline agent solution for your projects

In the next chapter, we'll learn about Artifacts in Azure DevOps.

Section 3:
Artifacts and
Deployments

In this section, we are going to cover how to use artifacts with Azure DevOps and how to
deploy your applications using pipelines.

This section contains the following chapters:

•	Chapter 7, Using Artifacts with Azure DevOps

•	Chapter 8, Deploying Applications with Azure DevOps

7
Using Artifacts with

Azure DevOps
In the previous chapter, we covered how to host build agents in Azure Pipelines. In this
chapter, we are going to cover how to use artifacts with Azure DevOps. We will begin by
explaining what artifacts are. Then, we will look at how to create them in Azure DevOps,
as well as how to produce the artifact package from a built pipeline. Next, we are going to
cover how to deploy the feed using a release pipeline. Then, we are going to cover how to
set the feed permissions and how to consume the package in Visual Studio. Finally, we are
going to cover how to scan for package vulnerabilities using WhiteSource Bolt.

The following topics will be covered in this chapter:

• Introducing Azure Artifacts

• Creating an artifact feed with Azure Artifacts

• Producing the package using a build pipeline

• Publishing the package to the feed from a build pipeline

• Configuring the feed permissions from the feed settings

• Consuming the package in Visual Studio from the Artifacts feed

• Scanning for package vulnerabilities using WhiteSource Bolt

230 Using Artifacts with Azure DevOps

Technical requirements
To follow this chapter, you need to have an active Azure DevOps organization. The
organization we'll be using in this chapter is the PartsUnlimited organization, which
we created in Chapter 1, Azure DevOps Overview. You also need to have Visual Studio
2019 installed, which can be downloaded from https://visualstudio.
microsoft.com/downloads/.

The source code for our sample application can be downloaded from https://
github.com/PacktPublishing/Learning-Azure-DevOps---B16392/
tree/master/Chapter%207.

Introducing Azure Artifacts
It is likely that every developer has used a third-party or open source package in
their code to add extra functionalities and speed up the development process of their
application. Using popular, pre-built components that have been used and tested by the
community will help you get things done more easily.

Functionalities, scripts, and code that have been built by various teams in your
organization are often reused by other teams and in different software development
projects. These different artifacts can be moved into a library or package so that others can
benefit from this.

There are different ways to build and host these packages. For instance, you can use NuGet
for hosting and managing packages for the Microsoft Development platform or npm for
JavaScript packages, Maven for Java, and more. Azure Artifacts offers features so that you
can share and reuse packages easily. In Azure Artifacts, packages are stored in feeds. A
feed is a container that allows you to group packages and control who has access to them.

You can store packages in feeds that have been created by yourself or other teams, but
it also has built-in support for upstream sources. With upstream sources, you can
create a single feed to store both the packages that your organization produces and the
packages that are consumed from remote feeds, such as NuGet, npm, Maven, Chocolatey,
RubyGems, and more.

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://github.com/PacktPublishing/Learning-Azure-DevOps---B16392/tree/master/Chapter%207
https://github.com/PacktPublishing/Learning-Azure-DevOps---B16392/tree/master/Chapter%207
https://github.com/PacktPublishing/Learning-Azure-DevOps---B16392/tree/master/Chapter%207

Creating an artifact feed with Azure Artifacts 231

It is highly recommended to use Azure Artifacts as the main source for publishing
internal packages and remote feeds. This is because it allows you to keep a comprehensive
overview of all the packages being used by the organization and different teams. The feed
knows the provenance of all the packages that are saved using upstream resources; the
packages are saved into the feed even when the original source goes down or the package
is deleted. Packages are versioned, and you typically reference a package by specifying the
version of the package that you want to use in your application.

Many packages allow for unrestricted access, without the need for users to sign in.
However, there are packages that require us to authenticate by using a username and
password combination or access token. Regarding the latter, access tokens can be set to
expire after a given time period.

In the next section, we are going to look at how to create an Artifact Feed in Azure
DevOps.

Creating an artifact feed with Azure Artifacts
In this demo, we are going to create an artifact feed in Azure Artifacts. Packages are stored
in feeds, which are basically organizational constructs that allow us to group packages
and manage their permissions. Every package type (NuGet, npm, Maven, Python, and
Universal) can be stored in a single feed.

For this demonstration, we are going to use our PartsUnlimited sample project again and
add a new artifact feed to the project. To do this, perform the following steps:

1. Open a web browser and navigate to https://dev.azure.com/.

2. Log in with your Microsoft account and from the left menu, select Artifacts. Then,
click the + Create Feed button.

https://dev.azure.com/

232 Using Artifacts with Azure DevOps

3. In the Create new feed dialog box, add the following values (make sure that
Upstream sources is disabled; we are not going to use packages from remote feeds
in this chapter):

Figure 7.1 – Creating a new feed

4. Click the Create button.

With that, we have created a new feed so that we can store our packages. In the next
section, we are going to produce a package using a build pipeline.

Producing the package using a build pipeline
Now that we have created our feed, we are going to create a build pipeline that
automatically creates a package during the build of the project. For this example, you can
use the sample project provided in this book's GitHub repository. This sample project
consists of all the models from the PartsUnlimited project. We are going to add all the
models to a package and distribute it from Artifacts. This way, you can easily share the
data model across different projects.

The first step is to import the GitHub repository into the PartsUnlimited organization in
Azure DevOps.

Producing the package using a build pipeline 233

Adding the sample project to the PartsUnlimited
repository
To add the sample models project to the PartsUnlimited repository, perform the
following steps:

1. Navigate to the PartsUnlimited project in Azure DevOps and go to Repos > Files.

2. Select Import repository from the PartsUnlimited dropdown:

Figure 7.2 – Importing a repository

3. Enter the URL of the source repository into the Clone URL box and add a name for
your new GitHub repository:

Figure 7.3 – Specifying the repository's URL

4. Click Import.

234 Using Artifacts with Azure DevOps

5. Once the project has been imported, the repository will look as follows:

Figure 7.4 – Repository in Azure DevOps

Now that we have imported the PartsUnlimited.Models project into an Azure DevOps
repository, we can use in a build pipeline to create a NuGet package of it.

In the next section, we are going to create a build pipeline that will automatically package
our project into an Artifact package.

Creating the build pipeline
Now that the project has been added to the repository, we can create the build pipeline.
To do this, perform the following steps:

1. Navigate to Azure DevOps and open the PartsUnlimited.Models project once
more. From the left menu, click on Pipelines.

2. Click on New pipeline from the top-right menu and select Use the classic editor
on the first screen of the wizard.

3. On the second screen, set the properties shown in the following screenshot and
click Continue:

Producing the package using a build pipeline 235

Figure 7.5 – Selecting a source

4. Select ASP.NET on the next screen of the wizard and click Apply. With that, the
Build pipeline will be created. Click on the + sign on the right-hand side of Agent
job 1 and search for NuGet.

5. Add the NuGet task to the pipeline:

Figure 7.6 – Adding the NuGet task

236 Using Artifacts with Azure DevOps

6. Reorder the tasks and drag the NuGet task so that it's after the Build Solution task.
Delete the Test Assemblies method since we don't have any tests in this project:

Fig. 7.7 – Reordering the tasks

7. Make the following changes to the settings of the newly added task:

--Display name: NuGet pack

--Command: pack

--Path to csproj or nuspec file(s) to pack: **/*.csproj

8. After making these changes, the task will look as follows:

Producing the package using a build pipeline 237

Figure 7.8 – Configuring the task

9. Next, let's set the versioning of the package. A recommended approach to
versioning packages is to use Semantic Versioning. Expand the Pack Options
section and add the following values to set up versioning:

--Automatic package versioning: Use the date and time

--Major: 1

--Minor: 0

--Patch: 0

--Time zone: UTC

10. From the top menu, select Save & queue and then Save and run.

The build pipeline will now run successfully. In the next section, we are going to publish
the PartsUnlimited.Models NuGet package that we created in the first demo to our feed.

238 Using Artifacts with Azure DevOps

Publishing the package to the feed from a
build pipeline
Now that we've built the application and the package from our build pipeline, we can
publish the package to the feed that we created in our first demo.

For this, we need to set the required permissions on the feed. The identity that the
build will run under needs to have Contributor permissions on the feed. Once these
permissions have been set, we can extend our pipeline to push the package to the feed.

Setting the required permissions on the feed
To set the required permissions, we need to go to the settings of our feed:

1. Log in with your Microsoft account and from the left menu, select Artifacts.

2. Go to the settings of the feed by selecting the Settings button from the
top-right menu:

Figure 7.9 – Opening the feed's settings

Publishing the package to the feed from a build pipeline 239

3. Then, click on Permissions from the top menu and click on + Add users/groups:

Figure 7.10 – Feed permission settings

4. Add the build that has the same name as the project, which in my case is the Parts.
Unlimited Build Service identity:

Figure 7.11 – Adding the build identity

5. Click Save.

Now that the identity of the build pipeline has the required permissions on the feed,
we can push the package to it during while it's being built.

Publishing the package
We are now ready to extend our build pipeline and push the package from it to the feed.
To do this, we need to perform the following steps:

1. Navigate to Azure DevOps and open the PartsUnlimited.Models project. Click on
Pipelines in the left menu.

2. Select the build pipeline that we created in the previous step and click on the Edit
button, which can be found in the top-right menu.

240 Using Artifacts with Azure DevOps

3. Click on the + button again next to Agent job 1 and search for NuGet. Add the task
to the pipeline.

4. Drag the newly added task below the NuGet task that we created in the previous
step. Make the following changes to the settings of the task:

--Display name: NuGet push

--Command: push

--Path to NuGet package(s) to publish: $(Build.
ArtifactStagingDirectory)/**/*.nupkg;!$(Build.
ArtifactStagingDirectory)/**/*.symbols.nupkg

--Target feed location: This organization/collection

--Target feed: PacktLearnDevOps

5. After making these changes, the task will look as follows:

Figure 7.12 – Adding a NuGet push task

6. From the top menu, select Save & queue and then Save and run. Wait until the
build pipeline has finished successfully.

7. Finally, let's check whether the package has been successfully published. Click on
Artifacts from the left menu. You will see that the package has been pushed to
the feed:

Consuming the package in Visual Studio from the Artifacts feed 241

Figure 7.13 – Pushed package

Now that we have a package with models, we can use it in our Visual Projects. In the next
section, we are going to create an application and consume the package from the feed in
Azure DevOps.

Consuming the package in Visual Studio from
the Artifacts feed
Now that our PartsUnlimited.Models package has been pushed to our feed in Artifacts,
we can consume this package from Visual Studio. In this section, we are going to create
a new console app in Visual Studio and connect to the feed from there.

Therefore, we need to perform the following steps:

1. Open Visual Studio 2019 and create a new .NET Core console application:

Figure 7.14 – Creating a new console package

242 Using Artifacts with Azure DevOps

2. Once the application has been created, navigate to Azure DevOps and from the left
menu, select Artifacts.

3. From the top menu, select Connect to feed:

Figure 7.15 – Connect to feed

4. On the next screen, select Visual Studio from the list. We are going to use these
settings to set up the machine in the next step:

Figure 7.16 – Visual Studio machine setup

5. Navigate back to the console app in Visual Studio. Then, from the top menu, select
Tools > NuGet package manager > Manage NuGet Packages for Solution:

Consuming the package in Visual Studio from the Artifacts feed 243

Figure 7.17 – NuGet package installer

6. To add the feed to the project, click on the settings icon:

Figure 7.18 – NuGet settings

7. Click on the + sign in the top-right menu and specify the following values to add
the feed:

--Name: LearnAzureDevOps.

--Source: Copy the feed URL from the machine's setup into Azure DevOps. In
my case, this is https://pkgs.dev.azure.com/PacktLearnDevOps/_
packaging/PacktLearnDevOps/nuget/v3/index.json.

244 Using Artifacts with Azure DevOps

The outcome of adding these values will look as follows:

Figure 7.19 – Adding the feed's package source

8. Click Update and then OK.

9. Now, we can consume the feed in our application. In the NuGet package manager,
select the package source that we just added. Make sure that Include prelease is
selected since this package hasn't been released yet:

Figure 7.20 – Selecting the package source

10. Select the package and install it in the project.

Consuming the package in Visual Studio from the Artifacts feed 245

11. Now, we can reference the package in our code and use the model classes. Add
a using statement and create a new CarItem by replacing the code in the
Program.cs file with the following:

using System;

using PartsUnlimited.Models;

namespace AzureArtifacts

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Hello World!");

 CartItem caritem = new CartItem()

 {

 CartId = "1",

 Count = 10,

 DateCreated = DateTime.Now,

 Product = new Product()

 {

 Title = "Product1"

 },

 ProductId = 21

 };

 }

 }

}

In this demonstration, we consumed the package that is automatically built and released
from the feed. In the next and last section of this chapter, we are going to look at how to
scan a package for vulnerabilities using WhiteSource Bolt.

246 Using Artifacts with Azure DevOps

Scanning for package vulnerabilities using
WhiteSource Bolt
WhiteSource Bolt can be used to scan packages for vulnerabilities directly from the build
pipeline. It is a developer tool for scanning for security vulnerabilities in application code,
as well as open source applications and packages. It offers extensions that can be installed
through the Azure DevOps marketplace and through GitHub. WhiteSource Bolt can be
downloaded free of charge, but this version is limited to five scans per day, per repository.

Important Note
For more information about WhiteSource Bolt, you can refer to the following
website: https://bolt.whitesourcesoftware.com/.

In this section, we are going to install the extension in our Azure DevOps project and
implement the tasks that come with it into our existing build pipeline. Let's get started:

1. Open a browser and navigate to https://marketplace.visualstudio.
com/.

2. Search for WhiteSource Bolt in the search box and select the WhiteSource
Bolt extension:

Figure 7.21 – Installing WhiteSource Bolt

https://bolt.whitesourcesoftware.com/
https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/

Scanning for package vulnerabilities using WhiteSource Bolt 247

3. Install the extension in your DevOps organization by selecting the organization and
clicking the Install button:

Figure 7.22 – Installing the extension in your organization

4. Once you've installed the package, navigate back to Azure DevOps > Pipelines.
You will see that WhiteSource Bolt has been added to the menu. Select it:

Figure 7.23 – WhiteSource Bolt menu item

248 Using Artifacts with Azure DevOps

5. On the Settings screen, specify a work email address, company name, and country.
Then, click the Get Started button:

Figure 7.24 – WhiteSource Bolt settings

6. We can now use WhiteSource Bolt tasks in our pipeline. Select the build pipeline
that we created in section Creating the build pipeline. Now, edit the pipeline.

7. Add a new task to the pipeline again, just like we did in the in Creating the build
pipeline section, and search for WhiteSource Bolt. Add the task to the pipeline:

Figure 7.25 – Adding the WhiteSource Bolt task

Scanning for package vulnerabilities using WhiteSource Bolt 249

8. Drag the task below the Build solution task since we want to scan the solution
before the package is packed and pushed into the Artifact feed. This will look
as follows:

Figure 7.26 – Overview of the build pipeline

9. You don't have to specify any configuration values; this task will run without them.

10. From the top menu, select Save & queue and then Save and run. Wait until the
build pipeline has finished successfully.

250 Using Artifacts with Azure DevOps

11. Go to the top menu once more and select WhiteSource Bolt Build Support. There,
you will see an overview of the scan:

Figure 7.27 – WhiteSource Bolt vulnerability report

With that, we have installed the WhiteSource Bolt extension and scanned our solution
for vulnerabilities before packaging and pushing the NuGet package to our feed in Azure
Artifacts.

This concludes this chapter.

Summary 251

Summary
In this chapter, we looked at Azure Artifacts in more depth. First, we set up a feed and
created a new NuGet package using the model classes in the PartsUnlimited project.
Then, we created a build pipeline where we packed and pushed the package to the feed
automatically during the build process. Finally, we used the WhiteSource Bolt extension
from the Azure marketplace to scan the package for vulnerabilities.

In the next chapter, we are going to focus on how to deploy applications in Azure DevOps
using release pipelines.

Further reading
Check out the following links for more information about the topics that were covered in
this chapter:

• What is Azure Artifacts?: https://docs.microsoft.com/en-us/azure/
devops/artifacts/overview?view=azure-devops

• Get started with NuGet packages in Azure DevOps Services and TFS:
https://docs.microsoft.com/en-us/azure/devops/artifacts/
get-started-nuget?view=azure-devops

https://docs.microsoft.com/en-us/azure/devops/artifacts/overview?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/artifacts/overview?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-nuget?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/artifacts/get-started-nuget?view=azure-devops

8
Deploying

Applications with
Azure DevOps

In previous chapters, we saw how you can automate your development processes by using
build pipelines for your code. But an important part of the software life cycle is also the
release phase. In this chapter, we will cover an overview of release pipelines; we'll see how
to create a release pipeline with Azure DevOps and how you can automate and improve
the deployment of your solutions by using release approvals and multi-stage pipelines.

We will cover the following topics in this chapter:

• An overview of release pipelines

• Creating a release pipeline with Azure DevOps

• Configuring continuous deployment on a release pipeline

• Creating a multi-stage release pipeline

• Using approvals and gates for controlling your release process

• Using environments and deployment groups

• Using YAML-based pipelines for release

254 Deploying Applications with Azure DevOps

Technical requirements
To follow this chapter, you need to have an active Azure DevOps organization. The
organization used in this chapter is the PartsUnlimited organization we created in
Chapter 1, Azure DevOps Overview.

An overview of release pipelines
Release pipelines permit you to implement the continuous delivery phase of a software
life cycle. With a release pipeline, you can automate the process of testing and deliver your
solutions (committed code) to the final environments or directly to the customer's site
(continuous delivery and continuous deployment).

With continuous delivery, you deliver code to a certain environment for testing or quality
control, while continuous deployment is the phase where you release code to a final
production environment.

A release pipeline can be triggered manually (you decide when you want to deploy your
code) or it can be triggered according to events such as a code commit on the master
branch, after the completion of a stage (for example, the production testing stage), or
according to a schedule.

A release pipeline is normally connected to an artifact store (a deployable component for
an application and output of a build). An artifact store contains a set of artifacts for a build
(distinct artifact versions), and a release pipeline takes these artifacts and provisions the
needed infrastructure and steps for deploying the artifacts.

A release pipeline (exactly as we saw in Chapter 4, Understanding Azure DevOps Pipelines,
for the build pipeline definition) is composed of different stages (parts of the pipeline that
can run independently), and each stage is composed of jobs and tasks.

A schema of a release pipeline is as follows:

An overview of release pipelines 255

Figure 8.1 – Release pipeline schema

As you can see in the preceding diagram, a release pipeline starts from artifacts (the
output of a successfully completed build) and then moves between stages, executing jobs
and tasks.

In Azure DevOps, a release pipeline is executed according to the following steps:

1. When a deployment request is triggered, Azure Pipelines checks whether a
pre-deployment approval phase is required and eventually sends approval
notifications to the involved people in a team.

2. When approved, the deployment job is queued and waits for an agent.

3. An agent that is able to run this deployment job picks up the job.

4. The agent downloads the artifacts as specified in the release pipeline definition.

5. The agent runs the tasks defined in the deployment job and creates a log for
each step.

6. When the deployment for a stage is completed, Azure Pipelines executes a post-
deployment approval (if present).

7. The deployment then goes to the next stage.

256 Deploying Applications with Azure DevOps

In a release pipeline, an artifact is deployed to an environment (where your final
application will run), and these environments can be the following:

• A machine on your corporate network

• A virtual machine in the cloud

• A containerized environment, such as Docker or Kubernetes

• A managed service, such as Azure App Service

• A serverless environment, such as Azure Functions

A way to define an Azure Pipelines environment is with a YAML file, where you can
include an environment section that specifies the Azure Pipelines environment where
you'll deploy your artifact, or by using the classic UI-based editor

In the next section, we'll see how to define a release pipeline with the Azure DevOps UI
in detail.

Creating a release pipeline with Azure DevOps
The final goal for implementing a complete CI/CD process with DevOps is to automate
the deployment of your software to a final environment (for example, the final customer),
and to achieve this goal, you need to create a release pipeline.

A release pipeline takes the build artifacts (the result of your build process) and deploys
those artifacts to one or more final environments.

To create our first release pipeline, we'll use the PartsUnlimited web application project
previously deployed on Azure DevOps:

1. To create a release pipeline with Azure DevOps, click on Pipelines on the left menu,
select Releases, and then click on New release pipeline:

Creating a release pipeline with Azure DevOps 257

Figure 8.2 – Creating a new release pipeline

2. In the Select a template list that appears on the right, you have a set of available
templates for creating releases for different types of applications and platforms. For
our application, select Azure App Service deployment and click Apply:

Figure 8.3 – Release pipeline template selection

258 Deploying Applications with Azure DevOps

3. Now, provide a name for the stage that will contain the release tasks. Here, I'm
calling it Deploy to cloud:

Figure 8.4 – Stage name

4. In the Stages section, click on the 1 job, 1 task link. Here, you need to provide the
settings of the Azure web app environment where your application will be deployed,
such as your Azure subscription and the App Service instance (web app) where the
code will be deployed:

Figure 8.5 – Stage settings

Creating a release pipeline with Azure DevOps 259

You have now defined the stage of your release pipeline (single-stage). In the next section,
we'll see how to specify the artifacts for your release pipeline.

Defining artifacts for a release pipeline
Artifacts are all the items (output of a build) that must be deployed in your final
environment, and Azure Pipelines can deploy artifacts that come from different artifact
sources:

1. To select artifacts, on the main release pipeline screen, click on Add an artifact:

Figure 8.6 – Adding an artifact to a release pipeline

260 Deploying Applications with Azure DevOps

2. In the Add an artifact panel, you have Source type automatically set to Build (this
means that you're deploying the output of a build pipeline). Here, you need to select
the build pipeline that you want to use as the source (the name or ID of the build
pipeline that publishes the artifact; here, I'm using the PartsUnlimitedE2E build
pipeline) and the default version (the default version will be deployed when new
releases are created. The version can be changed for manually created releases at the
time of release creation):

Figure 8.7 – Add an artifact

3. Click on the Add button to save the artifact configuration, and then click on the
Save button in the top-right corner to save your release pipeline:

Creating a release pipeline with Azure DevOps 261

Figure 8.8 – Saving a release pipeline

Your release pipeline is now ready. In the next section, we'll see how to create the Azure
DevOps release process.

Creating the Azure DevOps release
After defining our release pipeline (stages and artifacts), we need to create a release. A
release is simply a run of your release pipeline:

1. To create a release, on the release pipeline definition page, click on the Create
release button in the top-right corner:

Figure 8.9 – Creating a release

262 Deploying Applications with Azure DevOps

2. On the Create a new release page, accept all the default values (you need to have a
successfully completed build with artifacts created), and then click on Create:

Figure 8.10 – Creating a release

3. A new release is now created, and you will see a green bar indicating that:

Figure 8.11 – Release created

Creating a release pipeline with Azure DevOps 263

4. Now, you can click on the release name (here, it is Release-1) and you will be
redirected to the details of the release process:

Figure 8.12 – Release details

5. If you click on the stage, you can see the details of each step:

Figure 8.13 – Details of the stage

You have completed your first release pipeline. Here, we have triggered it manually. In the
next section, we'll see how to use variables in your pipeline.

264 Deploying Applications with Azure DevOps

Using variables in a release pipeline
In a release pipeline, you can also use variables and variable groups to specify variable
parameters that can be used in your pipeline tasks. To specify a variable for your release
pipeline, select the Variables tab and specify the name and value of your variable:

Figure 8.14 – Release pipeline variables

You can then use the variables in your pipeline's tasks by using the $(VariableName)
notation, as in the following screenshot:

Figure 8.15 – Using a variable in a release pipeline task

Creating a release pipeline with Azure DevOps 265

Using variables is recommended if you have parameters that change on your pipeline. In
the next section, we'll see how to configure triggers for continuous deployment.

Configuring the release pipeline triggers for
continuous deployment
To automate the continuous deployment of your application, you need to configure
triggers in your release pipeline definition:

1. To do that, click on the Continuous deployment trigger icon in the pipeline's
Artifacts section:

Figure 8.16 – Continuous deployment trigger

266 Deploying Applications with Azure DevOps

2. In the Continuous deployment trigger panel, enable it to automatically create a
new release after every successfully completed build and select a branch filter (for
example, the build pipeline's default branch):

Figure 8.17 – Continuous deployment trigger configuration

3. Now, in the Stages section, select the Pre-deployment conditions icon:

Figure 8.18 – Pre-deployment conditions

Creating a release pipeline with Azure DevOps 267

4. In the Pre-deployment conditions pane, check that the trigger for this stage is set
to After release (this means that the deployment stage will start automatically when
a new release is created from this pipeline):

Figure 8.19 – Pre-deployment conditions definition

In this pane, you can also define other parameters, such as selecting artifact condition(s)
to trigger a new deployment (a release will be deployed to this stage only if all the artifact
conditions match), setting up a schedule for the deployment, allowing pull request-
based releases to be deployed to this stage, selecting the users who can approve or reject
deployments to this stage (pre-deployment approvals), defining gates to evaluate before
deployment, and defining behavior when multiple releases are queued for deployment.

You have now created a release pipeline that takes your artifacts and deploys them to the
cloud by using Azure DevOps and also by applying continuous deployment triggers and
pre-deployment conditions checks.

In the next section, we'll see how to improve our release pipeline by using multiple stages.

268 Deploying Applications with Azure DevOps

Creating a multi-stage release pipeline
A multi-stage release pipeline is useful when you want to release your applications with
multiple steps (staging), such as, for example, development, staging, and production. A
quite common scenario in the real world is, for example, deploying an application initially
to a testing environment. When tests are finished, the application is moved to a quality
acceptance stage, and then, if the customer accepts the release, the application is moved to
a production environment.

Here, we'll do the same: starting from the previously created single-stage pipeline, we'll
create a new release pipeline with three stages, called DEV, QA, and Production. Each
stage is a deployment target for our pipeline:

1. In the previously defined pipeline, as a first step, I renamed the Deploy to cloud
stage to Production. This will be the final stage of the release pipeline.

2. Now, click on the Clone action to clone the defined stage into a new stage:

Figure 8.20 – Cloning a stage

3. A new cloned stage appears after the previously created stage. Change the name of
this stage to QA:

Creating a multi-stage release pipeline 269

Figure 8.21 – Cloned stage (QA)

4. Now, we need to reorganize the stages because the QA stage must occur before the
Production stage. To reorganize these stages, select the QA stage and choose the
pre-deployment conditions. In the Pre-deployment conditions pane, select After
release as the trigger (instead of After stage):

Figure 8.22 – Pre-deployment conditions for the QA stage

270 Deploying Applications with Azure DevOps

5. As you can see, the pipeline diagram has now changed (you have the QA and
Production stages executed in parallel). Now, select the Pre-deployment
conditions properties for the Production stage; set the trigger to After stage and
select QA as the stage:

Figure 8.23 – Pre-deployment conditions for the Production stage

6. The stages are now ordered as we want (QA occurs before Production).

7. At this point, we have two stages that deploy the application to the same
environment (QA was created as a clone of Production). Select the QA stage from
the Tasks drop-down list and change App service name to a new instance:

Creating a multi-stage release pipeline 271

Figure 8.24 – QA stage details

8. Now, we need to repeat the same steps for creating the DEV stage. Clone it from
QA, set its Pre-deployment conditions properties with the trigger set to After
Release, and change the QA trigger to After stage, with DEV as the selected stage.
Your pipeline will now look as follows:

cYou have now created a release pipeline with different stages (Dev, QA, and Production)
for controlling the deployment steps of your code.

In the next section, we'll see how to add approvals for moving between stages.

272 Deploying Applications with Azure DevOps

Using approvals and gates for managing
deployments
As previously configured, our release pipeline will move between stages only if the
previous stage is completed successfully. This is okay for moving from DEV to QA because
on this transition, our application is deployed to a testing environment, but the transition
from QA to Production should usually be controlled because the release of an application
into a production environment normally occurs after an approval.

Creating approvals
Let's follow these steps to create approvals:

1. To create an approval step, from our pipeline definition, select the Pre-deployment
conditions properties of the Production stage. Here, go to the Pre-deployment
approvals section and enable it. Then, in the Approvers section, select the
users that will be responsible for approving. Please also check that the The user
requesting a release or deployment should not approve it option is not ticked:

Figure 8.26 – Setting approvals

2. Click on Save to save your pipeline definition.

Using approvals and gates for managing deployments 273

3. Now, create a new release to start our pipeline and click on the name of the created
release (here, it is called Release-2):

Figure 8.27 – Multi-stage release triggered

4. The release pipeline starts. The DEV and QA stages are completed, while on the
Production stage, a Pending approval status appears:

Figure 8.28 – Pending approval

274 Deploying Applications with Azure DevOps

5. The release pipeline is waiting for approval. You can click on the Pending approval
icon and the approval dialog is opened. Here, you can insert a comment and then
approve or reject the release:

Figure 8.29 – Approving a stage

6. You can also defer the stage to a specific date if needed or reassign the approval to
another user.

7. If you click on Approve, the stage is approved and the release pipeline is completed:

Figure 8.30 – Multi-stage pipeline completed

Using approvals and gates for managing deployments 275

8. If you now click on the Azure App Service instance deployed by your pipeline, you
can see that the final code (the PartsUnlimited website) is deployed in the cloud:

9.

Figure 8.31 – Web app deployed from the release pipeline

Using gates to check conditions
In the previously explained scenario, we saw how to configure a manual approval process
for a release pipeline. Sometimes, you need to avoid the manual process and instead have a
policy in place that permits your pipeline to go ahead only if some checks are successfully
performed. This is where gates come in action.

In Azure Pipelines, a gate allows you to automatically check for specific conditions from
Azure DevOps from external services and then enable the release process only when
the conditions are met. You can use gates to check the status of work items and issues of
a project and enable the release only if you have no open bugs. You can also query test
results, check whether security scans on artifacts are performed before releasing, monitor
the infrastructure health before releasing, and so on.

276 Deploying Applications with Azure DevOps

As an example, here we want to configure a gate for our previously created release pipeline
where we check for open bugs on Azure Boards. We will see how to do this with the help
of the following steps:

Important note
If there are open bugs, the release pipeline cannot go ahead.

1. To check for open bugs in our project, we need to define a query for work items.
From our Azure DevOps project, select Boards, click on Queries, and then select
New query:

Figure 8.32 – Cresting a new query for the gate conditions

2. Here, I've defined a query as follows:

Figure 8.33 – Query definition
This query checks for active bugs in our project.

3. Save the query by giving it a name (for example, ActiveBugs) and specifying a
folder (here, I've selected the Shared Queries folder):

Using approvals and gates for managing deployments 277

Figure 8.34 – Saving the query definition

4. Now we're ready to define our gate. From the multi-stage release pipeline we
previously created, select the Production stage, click on the bolt icon, and then
enable gates, as shown in the following screenshot:

Figure 8.35 – Enabling gates

278 Deploying Applications with Azure DevOps

Here, you can also specify the delay before the evaluation of gates (the time before
the added gates are evaluated for the first time. If no gates are added, then the
deployment will wait for the specified duration before proceeding), and we can
specify the deployment gates (adding gates that evaluate health parameters). These
gates are periodically evaluated in parallel and if the gates succeed, the deployment
will proceed; otherwise, the deployment is rejected.

5. To specify our gate, click on Add and then select Query work items (this will
execute a work item query and check the results):

Figure 8.36 – Gate definition (Query work items)

6. Now, select the ActiveBugs query from the folder where you previously saved it
(the Shared folder, in my case) and specify Upper threshold as 0 (the maximum
number of matching work items from the query) because we want the release
pipeline to only be completed if we have 0 active bugs:

Using approvals and gates for managing deployments 279

Figure 8.37 – Specifying conditions for the gate

Here, you can also define evaluations options such as time between re-evaluation of gates
(the duration after which the gates are re-evaluated; this must be greater than the longest
typical response time of the configured gates to allow all responses to be received in each
evaluation), Minimum duration for steady results after a successful gates evaluation
(all gates must continuously be successful for this duration; 0 means deployment will
proceed when all gates succeed in the same evaluation cycle), timeout after which gates
fail (the maximum evaluation period for gates; the deployment will be rejected if the
timeout is reached before gates succeed).

Our gate is now defined and active. You can also define other types of gates and you can
also have gates that call Azure Functions to evaluate a release condition (which is useful if
you want to integrate your release check with specific conditions on an external system).

Using deployment groups
A deployment group is a set of machines with a deployment agent installed on each of
them. Each deployment group represents a physical environment and it defines a logical
group of target machines for parallel deployment.

280 Deploying Applications with Azure DevOps

You can define a deployment group in Azure DevOps by going to the Pipeline section and
selecting Deployment groups:

Figure 8.38 – Creating a deployment group

Here, you can add servers where the build and release agent is installed.

Each created deployment group is a member of a deployment pool, and this pool can also
be shared across projects. Deployment groups can only be used on release pipelines.

YAML release pipelines with Azure DevOps 281

You can add a deployment group job by going to the release pipeline editor, selecting
the job, and clicking on the three-dots button. Here, you can see the Add a deployment
group job option:

Figure 8.39 – Adding a deployment group job

At the time of writing, deployment group jobs are not yet supported on YAML pipelines.

YAML release pipelines with Azure DevOps
A recently added feature of Azure DevOps is the option to define release pipelines by
using YAML (previously, this was possible only for the CI part). This is now possible by
using multi-stage pipelines and with that, you can use a unified YAML experience for
configuring Azure DevOps pipelines for CI, CD, and CI/CD.

Defining the release YAML pipeline can be done exactly as described in Chapter 4,
Understanding Azure DevOps Pipelines. There are, however, some concepts to understand,
such as environments.

282 Deploying Applications with Azure DevOps

Environments are a group of resources targeted by a pipeline – for example, Azure Web
Apps, virtual machines, or Kubernetes clusters. You can use environments to group
resources by scope – for example, you can create an environment called development
with your development resources and an environment called production with the
production resources. Environments can be created by going to the Environments section
under Pipelines:

Figure 8.40 – Creating environments

The following is an example of a multi-stage release pipeline for deploying a .NET Core
application on Azure Web Apps:

stages:

 - stage: Build_Source_# Build Source Code for Dotnet Core
Web App

 jobs:

 - job: Build

 pool: 'Hosted VS2017'

 variables:

 buildConfiguration: 'Release'

 continueOnError: false

 steps:

YAML release pipelines with Azure DevOps 283

 - task: DotNetCoreCLI@2

 inputs:

 command: build

 arguments: '--configuration $(buildConfiguration)'

 - task: DotNetCoreCLI@2

 inputs:

 command: publish

 arguments: '--configuration $(buildConfiguration)
--output $(Build.ArtifactStagingDirectory)'

 modifyOutputPath: true

 zipAfterPublish: true

 - task: PublishBuildArtifacts@1

 inputs:

 path: $(Build.ArtifactStagingDirectory)

 artifact: drop

 - stage: Deploy_In_Dev # Deploy artifacts to the dev
environment

 jobs:

 - deployment: azure_web_app_dev

 pool: 'Hosted VS2017'

 variables:

 WebAppName: 'PartsUnlimited-dev'

 environment: 'dev-environment'

 strategy:

 runOnce:

 deploy:

 steps:

 - task: AzureRMWebAppDeployment@4

 displayName: Azure App Service Deploy

 inputs:

 WebAppKind: webApp

 ConnectedServiceName: 'pay-as-you-go'

 WebAppName: $(WebAppName)

 Package: $(System.WorkFolder)/**/*.zip

 - stage: Deploy_In_QA # Deploy artifacts to the qa
environment

284 Deploying Applications with Azure DevOps

 jobs:

 - deployment: azure_web_app_qa

 pool: 'Hosted VS2017'

 variables:

 WebAppName: 'PartsUnlimited-qa'

 environment: 'qa-environment'

 strategy:

 runOnce:

 deploy:

 steps:

 - task: AzureRMWebAppDeployment@4

 displayName: Azure App Service Deploy

 inputs:

 WebAppKind: webApp

 ConnectedServiceName: 'pay-as-you-go'

 WebAppName: $(WebAppName)

 Package: $(System.WorkFolder)/**/*.zip

 - stage: Deploy_In_Production # Deploy artifacts to the
production environment

 jobs:

 - deployment: azure_web_app_prod

 pool: 'Hosted VS2017'

 variables:

 WebAppName: 'PartsUnlimited'

 environment: 'prod-environment'

 strategy:

 runOnce:

 deploy:

 steps:

 - task: AzureRMWebAppDeployment@4

 displayName: Azure App Service Deploy

 inputs:

 WebAppKind: webApp

 ConnectedServiceName: 'pay-as-you-go'

 WebAppName: $(WebAppName)

 Package: $(System.WorkFolder)/**/*.zip

Summary 285

As you can see in the preceding YAML file, the pipeline defines four stages: Build Source,
Deploy in Dev, Deploy in QA, and Deploy in Production. At each of these stages, the
application is deployed on the specified environment.

Summary
In this chapter, we had a full overview of how to work with release pipelines in Azure
DevOps.

We created a basic release pipeline for the PartsUnlimited project, defined artifacts, and
created our first release by adding continuous deployment conditions.

Then, we improved our pipeline definition by using multiple stages (DEV, QA, and
Production), and at the end of this chapter, we saw how to define approvals and gates
for managing the release of our code in a more controlled way and the concepts around
YAML-based release pipelines

In the next chapter, we'll see how to integrate Azure DevOps with GitHub.

Section 4:
Advanced Features

of Azure DevOps

In this part, we are going to integrate Azure DevOps with GitHub and we are going to
cover some real-world examples.

This section contains the following chapters:

•	Chapter 9, Integrating Azure DevOps with GitHub

•	Chapter 10, Using Test Plans with Azure DevOps

•	Chapter 11, Real-World CI/CD Scenarios with Azure DevOps

9
Integrating Azure

DevOps with GitHub
GitHub is one of the most popular development platforms that's used by open source
developers and businesses across the globe to store their code. In this chapter, you will
learn how to leverage Azure DevOp's capabilities while you continue to use GitHub as
your software development hub.

We'll be covering the following topics:

• An overview of Azure DevOps and GitHub integration

• Integrating Azure Pipelines with GitHub

• Integrating Azure Boards with GitHub

• Overview of GitHub Actions

Technical requirements
To follow this chapter, you need to have an active Azure DevOps organization and a
GitHub account. You can sign up for a GitHub account here: https://github.com/
join.

https://github.com/join
https://github.com/join

290 Integrating Azure DevOps with GitHub

Let's get this chapter's prerequisites ready. This chapter requires that you have the Parts
Unlimited GitHub repository cloned to your GitHub account. You will also need an
Azure DevOps project to follow the examples in this chapter. Follow these steps before
moving on to the next section:

1. Launch a browser instance and go to https://github.com/microsoft/
PartsUnlimitedE2E.

2. Click Fork, as shown in the following screenshot:

Figure 9.1 – GitHub repository for Parts Unlimited

3. GitHub should prompt you to log into your account if you're not logged in already.
Select the account you wish to clone the repository to.

4. This will take a couple of minutes to complete. You should see the repository in your
account upon completion.

5. We will be using this repository to test GitHub integration in this chapter.

6. Now, log into Azure DevOps (https://dev.azure.com) and create a new
empty project:

https://github.com/microsoft/PartsUnlimitedE2E
https://github.com/microsoft/PartsUnlimitedE2E
https://dev.azure.com

Technical requirements 291

Figure 9.2 – Creating a new project

You're now ready to try out the examples described in this chapter.

292 Integrating Azure DevOps with GitHub

An overview of Azure DevOps and GitHub
integration
GitHub and Azure DevOps go hand in hand to provide a superior software development
experience for teams, enabling them to ship and release software at a faster pace with
minimal effort. In many scenarios, GitHub and Azure DevOps are competitors (for
example, Azure Repos versus GitHub repositories), so it is typically up to you to choose
the one that fits your needs and integrate them together for a wholesome platform setup.

Azure DevOps provides various RBAC levels, native enterprise identity integration, and
so on, whereas GitHub enables simple collaboration across identities (while including AD
integration in its Enterprise version).

When it comes to Continuous Integration/Continuous Development, Azure DevOps is
way ahead and has matured compared to its counterpart, GitHub Actions. So, overall, it
depends on your use case and requirements whether you choose Azure DevOps and/or
GitHub for specific components in your software development life cycle.

GitHub includes an extension marketplace where you can find many third-party
applications to extend GitHub to the applications you use. Azure DevOps integration is
available through many of these extensions on GitHub Marketplace. Let's look at some of
them.

GitHub and Azure DevOps integration is achieved through the Azure Boards and Azure
Pipelines extensions. Let's start by taking a look at the Azure DevOps extensions available
in GitHub Marketplace:

1. Launch a browser instance and go to https://github.com/marketplace.

2. Search for Azure in the extension marketplace. You'll find many extensions that
can integrate Azure solutions with your GitHub repositories.

3. Here, we're interested in two specific extensions: Azure Boards and Azure Pipelines.
Let's talk about them in a bit more detail:

--Azure Boards: This extension allows you to link your Azure Boards work items to
GitHub objects such as commits, pull requests, and issues:

Figure 9.3 – Azure Boards extension

https://github.com/marketplace

Integrating Azure Pipelines with GitHub 293

--Azure Pipelines: This extension allows you to build and release software
using Azure Pipelines while your code is stored and maintained in your GitHub
repository:

Figure 9.4 – Azure Pipelines extension

You can install these extensions from GitHub Marketplace and start configuration from
GitHub itself, but in this chapter, we will be starting the integration process from Azure
DevOps. GitHub and Azure DevOps integration is also supported for the on-premise
variants of both products (GitHub on-premises and Azure DevOps Server).

Integrating Azure Pipelines with GitHub
Integrating Azure Pipelines with GitHub enables developers to continue using GitHub as
their preferred source control management platform while leveraging Azure Pipelines'
build and release capabilities. Azure Pipelines offers unlimited pipeline job minutes for
open source projects.

We looked at Azure Pipelines in detail previously in this book, so in this section, we'll take
a look at how to store our Azure Pipelines configuration and source code in GitHub and
build a CI/CD process with GitHub and Azure DevOps.

Setting up Azure Pipelines and GitHub integration
In order to use Azure Pipelines with GitHub, you must authorize Azure Pipelines to access
your GitHub repositories. Let's take a look at the steps for this:

1. Log into your Azure DevOps account and select the project we created in the
Technical requirements section.

294 Integrating Azure DevOps with GitHub

2. Click on Pipelines > Create Pipeline:

Figure 9.5 – Create Pipeline

3. Select GitHub as your code source location:

Figure 9.6 – GitHub source for Azure Pipelines

Integrating Azure Pipelines with GitHub 295

4. You will need to grant permission from Azure Pipelines to your GitHub account:

Figure 9.7 – Authorize Azure Pipelines (OAuth)

296 Integrating Azure DevOps with GitHub

5. Upon successful completion, you will have your GitHub repositories listed in Azure
DevOps. Select the newly created PartsUnlimitedE2E repository:

Figure 9.8 – Parts Unlimited repository

6. You will now get the option to install the Azure Pipelines application in your
GitHub account. You can choose to install it for only a specific repository or for all
repositories. Once you've made this choice, click Approve & Install:

Figure 9.9 – Installing the Azure Pipelines extension

Integrating Azure Pipelines with GitHub 297

7. Since Parts Unlimited is a ASP.NET-based application, please choose ASP.NET as
your pipeline configuration template:

Figure 9.10 – Azure Pipelines task configuration

298 Integrating Azure DevOps with GitHub

8. Azure DevOps will automatically generate a pipeline YAML file. You can review
and modify it based on your requirements. PartsUnlimited E2E is designed to run
build operations on Visual Studio 2017 on a Windows 2016 image. Please change
the vm-image name to vs2017-win2016 before continuing:

Figure 9.11 – Azure Pipelines task YAML

9. Click Save and run to save the pipeline.

10. You will need to make a commit to the repository to store the pipeline YAML file.
You can commit the changes to the master branch or create a new branch to do so:

Integrating Azure Pipelines with GitHub 299

Figure 9.12 – Running an Azure pipeline

11. Clicking on Save and run will create the pipeline and start its execution. It may take
a few minutes for the build job to complete:

Figure 9.13 – Pipeline jobs

300 Integrating Azure DevOps with GitHub

12. While this completes, let's look at the changes you made to your GitHub repository.
Browse to your GitHub account and go to the PartsUnlimitedE2E repository.

13. You will see a commit and a newly added azure-pipelines.yml file, which
stores the pipeline's configuration:

Figure 9.14 – Pipeline YAML in GitHub

14. If you click on the little yellow dot shown in the preceding screenshot, you will be
shown the status of your Azure pipeline on your GitHub repository page. Upon
successful completion of the pipeline job, you should see its status update on your
GitHub account:

Integrating Azure Pipelines with GitHub 301

Figure 9.15 – Job logs in GitHub

With that, you have set up an Azure pipeline with GitHub.

Testing continuous integration
In this section, we will try out the CI capabilities of GitHub and Azure Pipelines. We'll
make a code change in GitHub and raise a pull request that will trigger the Azure
Pipelines job automatically.

302 Integrating Azure DevOps with GitHub

Let's get started:

1. Browse to your GitHub account and open the PartsUnlimited E2E repository.

2. Click on Readme.MD and click Edit:

Figure 9.16 – Readme.MD

3. Update the file so that it includes some sample text. Choose the option to create a
new branch and click Propose changes:

Figure 9.17 – Propose changes

4. Click Create pull request, as shown in the following screenshot:

Figure 9.18 – Create pull request

Integrating Azure Pipelines with GitHub 303

5. This will open the Pull request page. It'll take a couple of minutes for the Azure
Pipelines job to start. Once started, you can click on Details to see the status of the
pipeline job:

Figure 9.19 – Pull request automated checks

304 Integrating Azure DevOps with GitHub

6. This concludes testing out the continuous integration capabilities of GitHub and
Azure Pipelines. As we can see, Azure Pipelines and GitHub integrate very well
and provide a whole new DevOps experience. You can merge the pull request to
complete this process.

Adding a build Status badge
Azure Pipelines provides markup text that can be used in your GitHub repository
documentation to provide the status of the pipelines job for the project. This can help
developers be aware of the pipeline's status at any time, without the need to go to Azure
DevOps.

Let's learn how to set up an Azure Pipelines Status badge:

1. Log into Azure DevOps and browse to Your project > Pipelines > PartsUnlimited
E2E.

2. Click on the ellipses (…) and select Status badge:

Figure 9.20 – Status badge

Integrating Azure Pipelines with GitHub 305

3. Copy the Sample markdown text box's value. Optionally, you can choose to get
the markdown for a specific branch. Please save this markdown in a temporary
location:

Figure 9.21 – Status badge URL

4. Now, before we can use this in GitHub, we must allow anonymous access to the
project's badge.

5. Click on Project Settings > Pipelines > Settings.

306 Integrating Azure DevOps with GitHub

6. Turn off the Disable anonymous access to badges setting. If you find this option
grayed out, you must turn this off in the organization settings first:

Figure 9.22 – Status badge access

7. Now, you can use this markdown in your GitHub documentation. It is
recommended that you keep this in your repository's README file so that it's the
first thing anyone will see:

Figure 9.23 – Status badge markdown

Integrating Azure Boards with GitHub 307

8. Upon committing your changes, you should see the Azure Pipelines badge:

Figure 9.24 – Status badge showcase

With that, you've completed the Azure Pipelines integration with GitHub. In the next
section, we'll take a look at integrating Azure Boards with GitHub.

Integrating Azure Boards with GitHub
Azure Boards is the best place to plan and track your work items. Integrating Azure
Boards with GitHub allows you to keep using Azure Boards as your planning and
managing platform while you continue using GitHub as your source control management
platform.

By integrating Azure Boards with GitHub, you can link objects from Azure Boards to
GitHub. A few examples are as follows:

• Work item and Git commit/issue/pull request linking means you can link your work
items to the corresponding work being done in GitHub.

• You can update your work item's status from GitHub itself.

• Overall, integration allows us to track and link the deliverable across the two
platforms easily.

Now, let's set up our Azure Boards integration.

308 Integrating Azure DevOps with GitHub

Setting up Azure Boards and GitHub integration
Azure Boards is another extension available in GitHub Marketplace. You can configure the
integration from both Azure DevOps and GitHub Marketplace.

Let's set this up with the help of the following steps:

1. Log into Azure DevOps and browse to your Parts Unlimited project > Project
settings > Boards > GitHub connections:

Figure 9.25 – Connecting GitHub to Boards

2. Click on Connect your GitHub account. You will need to authorize Azure Boards
in order to access your GitHub account. Upon successfully linking them, you'll need
to select the GitHub organization you want to connect to.

Integrating Azure Boards with GitHub 309

3. Azure DevOps will list your repositories. Please choose PartsUnlimited E2E for the
purpose of this project and click Save:

Figure 9.26 – Selecting a GitHub repository

310 Integrating Azure DevOps with GitHub

4. This will redirect you back to GitHub so that you can install the Azure Boards
application. You can choose to install it for specific repositories or for all your
repositories:

Figure 9.27 – Approving the Azure Boards extension

Integrating Azure Boards with GitHub 311

5. Upon installing Azure Boards, you should see your GitHub connection listed with a
green checkmark, meaning it has been successful:

Figure 9.28 – GitHub connection status

With that, you have set up Azure Boards and GitHub integration.

Adding an Azure Boards Status badge
Like the Azure Pipelines status badge, Azure Boards also provides a status badge that can
show stats about the work items inside your GitHub repository.

In this section, we'll add a status badge from Azure Boards to our GitHub repository with
the help of the following steps:

1. Log into Azure DevOps, browse to Boards, and click on the settings gear icon:

Figure 9.29 – Azure Boards work items

312 Integrating Azure DevOps with GitHub

2. On the Settings page, browse to the status badge and set the following settings:

 a) Check the Allow anonymous users to access the status badge box.

 b) You can choose to show only the 'In Progress' columns or include all columns.

Your screen should look as follows:

Figure 9.30 – Azure Boards status access

3. Copy the sample markdown field and save the settings. You can use this markdown
in your GitHub documentation.

4. Once you've added the markdown to your GitHub README file, it should show the
Work Items status, as shown in the following screenshot:

Integrating Azure Boards with GitHub 313

Figure 9.31 – Azure Boards status showcase

Next, we'll look at linking Azure Boards objects to GitHub objects.

Linking Azure Boards work items to GitHub objects
Now that we have Azure Boards integrated with GitHub, let's learn how to link and track
items across the two platforms. Let's get started:

1. In Azure Boards, create a new work item. You can use the Azure board status badge
task we completed earlier as an example here:

Figure 9.32 – Azure Boards work items

2. You will see that your status badge icon in GitHub gets updated immediately upon
being refreshed, with one item in the To Do state.

314 Integrating Azure DevOps with GitHub

3. Since this task has already been completed, we can link it to the respective GitHub
commit. Open the newly created task and click on Add link:

Figure 9.33 – Add link

Integrating Azure Boards with GitHub 315

4. Click on the Link type drop-down and choose GitHub Commit. Provide your
GitHub commit URL and click OK. Note that you also have the options to link to a
GitHub issue or pull request:

Figure 9.34 – The Add link window

316 Integrating Azure DevOps with GitHub

5. You will now see the GitHub commit linked to the work item. Change its State to
Done:

Figure 9.35 – GitHub link added

Integrating Azure Boards with GitHub 317

6. By doing this, you can view your GitHub objects in Azure Boards, which can be
used to directly open the respective commit link in GitHub:

Figure 9.36 – GitHub link added to Azure Boards

Next, we'll learn how to update a work item's status from GitHub.

Updating work items from GitHub
In this section, we'll learn how to change the state of a work item in Azure Boards from
GitHub itself. This will help you link your GitHub objects to an Azure Boards work item,
enabling a two-way linking and tracking system.

318 Integrating Azure DevOps with GitHub

Let's get started:

1. Go to Azure Boards > Boards > New item. Create a test work item with a name of
your choice:

Figure 9.37 – Updating the work item

2. Take note of the ID of the work item (it's 347 in this example).

3. Now, go to your GitHub repository, make any minor change to any file, and create a
pull request.

4. In the pull request information box, you can refer to the Azure Boards task by using
AB#347, where 347 is your work item ID:

Figure 9.38 – Pull request information box

Integrating Azure Boards with GitHub 319

5. Once you've completed the pull request, you will see that the commit message is
now hyperlinked to Azure Boards and that the status for this work item in Azure
Boards is updated to Done:

Figure 9.39 – Git comment on the pull request
This was a quick example of how to link GitHub objects by referring to
Azure Boards work items by following some simple syntax; that is,
AB#<Work Item ID >. As soon as you link the work item to GitHub, your
Azure Board work item will also be updated with a link to the corresponding
GitHub object.

320 Integrating Azure DevOps with GitHub

6. Along with the link objective, in this demonstration, you also updated the state of
the work item by using a simple instruction in the commit message. Let's take a look
at some of the sample messages you can use:

Figure 9.40 – Sample messages

This concludes how to integrate with Azure Boards and GitHub. In this section, we looked
at how to manage tasks better by using Azure Boards and GitHub together. In the next
section, we'll take a look at GitHub Actions.

Overview of GitHub Actions
GitHub Actions is a CI/CD service from GitHub that's used to build and release
applications being developed in GitHub repositories. Essentially, GitHub Actions is
similar to Azure Pipelines, where you can set up your build and release pipelines to
automate the entire software development life cycle.

GitHub Actions was launched in early 2019 to provide a simple DevOps experience built
into GitHub itself. GitHub Actions includes enterprise-grade features, such as support for
any language with built-in, self-hosted agents for various OSes and container images.

It includes various pre-built workflow templates built by the community, which can make
it easier for you to build your DevOps pipeline.

Summary 321

It is outside the scope of this book to talk about GitHub Actions in detail, but you can
refer to the GitHub Actions documentation at https://github.com/features/
actions to get started.

Summary
In this chapter, we looked at how to use GitHub and Azure DevOps together to build an
integrated software development platform for our software teams. To do this, we learned
how to set up and manage Azure DevOps pipelines from GitHub, as well as build and
integrate CI/CD solutions.

We also learned about how to plan and track our work better in Azure Boards while
doing software development in GitHub. You should now be able to use GitHub and Azure
DevOps together and improve your overall productivity and DevOps experience. You
should also be able to set up integration between the two services and use it in your daily
DevOps work.

In the next chapter, we'll look at several real-world CI/CD examples with the help of
Azure DevOps.

https://github.com/features/actions
https://github.com/features/actions

10
Using Test Plans

with Azure DevOps
In the previous chapter, we covered how you can integrate Azure DevOps with GitHub.

In this chapter, we are going to cover how to use test plans with Azure DevOps.
Comprehensive testing should be added to each software development project, because
it delivers quality and a great user experience for your applications. We will begin with
a brief introduction to Azure Test Plans. Then we will look at how you can manage test
plans, suites, and cases in Azure DevOps. We will run and analyze a test as well. After that,
we will cover exploratory testing and we will install the Test & Feedback extension.

The following topics will be covered in this chapter:

• Introduction to Azure Test Plans

• Exploratory testing

• Installing and using the Test & Feedback extension

• Planned manual testing

• Test plans, test suites, and test cases

• Managing test plans, test suites, and test cases

• Running and analyzing a manual test plan

324 Using Test Plans with Azure DevOps

Technical requirements
To follow this chapter, you need to have an active Azure DevOps organization. The
organization used in this chapter is the Parts Unlimited organization that we created in
Chapter 1, Azure DevOps Overview. You also need to have Visual Studio 2019 installed,
which can be downloaded from https://visualstudio.microsoft.com/
downloads/.

The test plan that is used to run and analyze a manual test plan can be downloaded
from https://github.com/PacktPublishing/Learning-Azure-DevOps-
--B16392/tree/master/Chapter%2010.

Introduction to Azure Test Plans
Manual and exploratory testing can be key testing techniques in delivering quality and a
great user experience for your applications. In modern software development processes,
quality is the responsibility of all the team members, including developers, managers,
business analysts, and product owners.

To drive that quality, Azure DevOps Test Plans offers powerful tools that can be used by
everyone in the team. And by embedding your test plans in Azure DevOps, testing can be
done throughout the whole development life cycle as well.

Azure DevOps Test Plans offers support for planned manual testing, user acceptance
testing, exploratory testing, and stakeholder feedback. This will be covered in more detail
in the following sections.

Let's look at each of them in detail in the following sections. In the next section, we are
going to cover exploratory testing.

Exploratory testing
With exploratory testing, testers are exploring the application to identify and document
potential bugs. It focuses on discovery and relies on the guidance of the individual tester
to discover defects that are not easily discovered using other types of tests. This type of
testing is often referred to as ad hoc testing.

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://github.com/PacktPublishing/Learning-Azure-DevOps---B16392/tree/master/Chapter%2010
https://github.com/PacktPublishing/Learning-Azure-DevOps---B16392/tree/master/Chapter%2010

Exploratory testing 325

Most quality testing techniques use a structured approach by creating test cases up front
(just like we did in our previous demo). Exploratory testing is the opposite of this and is
mostly used in scenarios where someone needs to learn about a product or application.
They can review the quality of the product from the user perspective and provide feedback
quickly. This will also make sure that you don't miss cases that can lead to critical quality
failures. The outcome of these ad hoc tests can later be converted into a test plan as well.

Microsoft has released a Test & Feedback extension for exploratory testing. This extension
can be installed on the browser and used by all the stakeholders that are involved in the
software development project, such as developers, product owners, managers, UX or UI
engineers, marketing teams, and early adopters. The extension can be used to submit bugs
or provide feedback to contribute to the quality of the software.

In the next demonstration, we are going to look at how we can install the Test & Feedback
extension.

Installing and using the Test & Feedback extension
The Test & Feedback extension can be installed from the Visual Studio Marketplace and is
currently available for Chrome and Firefox (version 50.0 and higher). Chrome extensions
can also be installed in the Microsoft Edge browser. This browser is based on Chromium.

Important note
For a detailed overview of what browsers and features are supported, you
can refer to the following article: https://docs.microsoft.com/
en-us/azure/devops/test/reference-qa?view=azure-
devops#browser-support.

To install the Test & Feedback extension, follow these steps:

1. Navigate to the Visual Studio Marketplace: https://marketplace.
visualstudio.com/.

https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/

326 Using Test Plans with Azure DevOps

2. Select the Azure DevOps tab and search for Test & Feedback. Select the Test &
Feedback extension for the list:

Figure 10.1 – Selecting the Test & Feedback extension

3. This will open the detail page for the extension. From here, you can install it. Click
the Install button at the top of the screen:

Figure 10.2 – Installing the Test & Feedback extension

Exploratory testing 327

4. Next, you will be redirected to the supported browsers where this extension can be
installed. Click the Install button below the browser that you are currently using to
install the extension. You will be redirected to the extension page of your current
browser. There, you can install it.

5. Once the extension is installed, the icon will be added to the right of the address bar.
Select the Connections button:

Figure 10.3 – Test & Feedback extension configuration

328 Using Test Plans with Azure DevOps

6. You need to specify the Azure DevOps server URL there to connect to your Azure
DevOps instance. The URL begins with https://dev.azure.com/ and ends
with the project name. After providing the URL, click Next. After connecting to the
project, you can select the team. Select Parts.Unlimited Team:

Figure 10.4 – Connecting to Azure DevOps

7. Click Save.

Now that the extension is configured, we can start using it. You can use the extension for
exploratory testing or for providing feedback:

8. We are going to start an exploratory testing session. Click the Start button:

Figure 10.5 – Starting exploratory testing

9. This will activate the menus. Once you have a web application open for testing, you
can find the area that has a bug, take screenshots, make notes, or record actions as a
video:

Exploratory testing 329

Figure 10.6 – Extension options

10. Once you are done with exploring and gathering and registering information, you
can create a bug, task, or test case. Click Create bug:

Figure 10.7 – Extension options

11. You can provide a title and include your discovered information in there as well:

Figure 10.8 – Creating a bug

330 Using Test Plans with Azure DevOps

12. Click Save.

13. You can also view a list of all the activities from the extension. There you can also
see the bug ID, so you can trace it in Azure DevOps as well:

Figure 10.9 – Overview of actions

Important note
For more information about how to create feedback items in Azure DevOps,
refer to the following website: https://docs.microsoft.com/
en-us/azure/devops/test/request-stakeholder-
feedback?view=azure-devops. To respond to this feedback items
using the Test & Feedback extension, visit https://docs.microsoft.
com/en-us/azure/devops/test/provide-stakeholder-
feedback?view=azure-devops#provide.

In this demonstration, we installed the Test & Feedback extension from the Visual Studio
Marketplace, which can be used for exploratory testing.

In the next section, we are going to look into planned manual testing.

Planned manual testing
Over the years, manual testing has evolved together with the software development
process into a more agile approach. With Azure DevOps, manual testing is integrated into
the different agile processes that are supported and can be configured in Azure DevOps.

https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback?view=azure-devops

Planned manual testing 331

Important note
The different agile processes that are supported and integrated in Azure
DevOps are covered in more detail in Chapter 2, Managing Projects with Azure
DevOps Boards.

Software development teams can begin manual testing right from the Kanban board from
Azure Boards. From the board, you can monitor the status of the tests directly from the
cards. This way, all team members can get an overview of what tests are connected to the
work items and stories. From there the team can also see what the status is of the different
tests.

In the following image, you can see the tests and statuses that are displayed on the board:

Figure 10.10 – Tests displayed in the work hub

If more advanced testing capabilities are needed, Azure Test Plans can also be used for all
the test management needs. The Test hub can be accessed from the left menu, under Test
Plans, and there it offers all the capabilities that are needed for a full testing life cycle.

332 Using Test Plans with Azure DevOps

In the following image, you see the how the Test Hub can be accessed from the left menu,
together with the different menu options:

Figure 10.11 – Test Hub in Azure DevOps

These capabilities include test plans, test suites, test cases, test authoring, testing
applications, and test tracking. Test plans, test suites, and test cases will be covered in
more detail in the next section.

Test plans, test suites, and test cases
In Azure DevOps Test Plans, you can create and manage test plans and test suites for
sprints or milestones that are defined for your software development project. Test Plans
offers three main types of test management artifacts: Test plans, Test suites, and Test
cases. These artifacts are all stored in the work repository as special types of work items
and can be exported and shared with the different team members or across different
teams. This also enables the integration of the test artifacts with all of the DevOps tasks
that are defined for the project.

The three artifacts have the following capabilities:

• Test plans: A test plan groups different test suites, configurations, and individual
test cases together. In general, every major milestone in a project should have its
own test plan.

• Test suites: A test suite can group different test cases into separate testing scenarios
within a single test plan. This makes it easier to see which scenarios are complete.

Test plans, test suites, and test cases 333

• Test cases: With test cases, you can validate individual parts of your code or app
deployments. They can be added to both test plans and test suites. They can also
be added to multiple test plans and suites if needed. This way, they can be reused
effectively without the need to copy them. A test case is designed to validate a work
item in Azure DevOps, such as a feature implementation or a bug fix.

In the next section, we are going to put this theory into practice and see how you can
create and manage test plans in Azure DevOps.

Managing test plans, test suites, and test cases
For this demonstration, we are going to use the Parts Unlimited project again. It also has
a test plan in Azure DevOps, so we are going to look at that first. Therefore, we have to
follow these steps:

1. Open a web browser and navigate to https://dev.azure.com/.

2. Log in with your Microsoft account and select the Parts.Unlimited project. Then,
in the left menu, select Test Plans. This will let you navigate to the test plan that has
already been added to the project.

3. Select Parts.Unlimited_TestPlan1 from the list to open it. The suites of tests are
added to this plan. Select As a customer, I would like to store my credit card
details securely. This will open the list of individual test cases that have been added
to this suite:

Figure 10.12 – Open the test suite item

https://dev.azure.com/

334 Using Test Plans with Azure DevOps

4. Then, right-click the first item in the list: Verify that user is allowed to save his
credit card detail. In the menu, select Edit test case:

Figure 10.13 – Edit the test case

5. On the edit screen of this test case, there are four steps. You can also link the test
case to a commit, pull request, branch, or work item from here. We are going to add
this test case to an existing work item. Under Related Work, select + Add link and
then click Existing item:

Figure 10.14 – Add a work item to the test case

Test plans, test suites, and test cases 335

6. In the Add link window, select Parent and then search for credit card. Select
the Credit Card Purchase feature to link the test case to:

Figure 10.15 – Select the work item

7. Click OK to link the work item. The parent feature is now linked to the test case and
test suite. Anyone can now navigate between them and view the relationship.

8. In the test case window, click Save & Close.

336 Using Test Plans with Azure DevOps

In some cases, test cases should be run in a specific order. To do this click Define in
the top menu and select the Verify that user is not allowed to save invalid credit card
details test case. Then drag the test case above the first test case in the list:

Figure 10.16 – Reordering test cases

You will now see that the order of the test cases has changed.

You can also assign different configurations to each test case. For example, you can assign
configurations for different environments such as different versions of Windows or
browsers, mobile devices, and so on:

1. To assign a configuration, right-click on the test case and select Assign
configuration:

Test plans, test suites, and test cases 337

Figure 10.17 – Assign configuration

2. In the configurations overview list, you will see that there is already a configuration
selected for this test case, which is Windows 10. If not, assign it and click Save.
Close the list:

Figure 10.18 – Available and selected configurations

338 Using Test Plans with Azure DevOps

Important note
Adding and managing test plan configurations is beyond the scope of this book.
However, if you want more information you can refer to the following article:
https://docs.microsoft.com/en-us/azure/devops/
test/test-different-configurations?view=azure-
devops.

Next, we will create a new test suite. You can create three different types of test suites:
static, where you manually assign the test cases; requirement-based, where you create
the suite based on common requirements; and query-based, where test cases are
automatically added based on the outcome of a query:

1. Let's add a new requirement-based test suite. For this, select the three dots next to
Parts.Unlimited_TestPlan1 > New Suite > Requirement based suite:

Figure 10.19 – Creating a requirement-based test suite

https://docs.microsoft.com/en-us/azure/devops/test/test-different-configurations?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/test/test-different-configurations?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/test/test-different-configurations?view=azure-devops

Test plans, test suites, and test cases 339

2. Here, you can create your own query for retrieving work items based on your
requirements. For this demonstration, we will use the default settings. Click Run
query and then select the three items that are related to shipping:

Figure 10.20 – Select the work items related to shipping

340 Using Test Plans with Azure DevOps

3. Click Create suites to create a test suite for each item.

4. We are going to add some test cases to this suite. You can add them one at a time or
use a grid layout to quickly add many test cases. We are going to use the grid layout
here. Select one of the added test suites, click the arrow new to the New Test Case
button, and then click Add test cases using grid:

Figure 10.21 – Add test cases using grid

5. Add the following test cases to the grid:

 a) First test case:

 i) Title: Order summary shows expected delivery date

 ii) Step action: Visit 'my orders'

 iii) Step expected result: Expected delivery date shown

 b) Second test case:

 i) Title: Delayed orders highlighted

 ii) Step action: Visit order page for delayed package

 iii) Step expected result: Delayed status is highlighted

Running and analyzing a manual test plan 341

c) Third test case:

 i) Title: Delivery steps for package

 ii) Step action: Visit order page for in-progress package

 iii) Step expected result: Delivery steps and status shown

This will look like the following screenshot:

Figure 10.22 – Define the test cases

6. Click the Save test cases button on the left and then click Close Grid on the right of
the screen.

In this demonstration, we have managed some test cases and created a new requirement-
based test suite. In the next section, we are going to run and analyze a manual test plan.

Running and analyzing a manual test plan
In this demonstration, we are going to run and analyze a manual test plan. For this, we are
going to use the test plan that is already added to the Parts.Unlimited project in Azure
DevOps again and import a test suite. The test suite can be downloaded from the GitHub
repository that belongs to this chapter. You can obtain the GitHub URL at the beginning
of the chapter from the Technical requirements section:

1. Open the test plan of the Parts.Unlimited project again in Azure DevOps.

2. First, we need to add a new static test suite. For this, select the three dots next to
Parts.Unlimited_TestPlan1 > New Suite > Static suite. Name the suite End-to-
end tests.

342 Using Test Plans with Azure DevOps

3. Select the newly created suite and in the top menu, select the import button to
import test cases:

Figure 10.23 – Import test cases

4. Import the test plan that is in the folder of Chapter 10 in the source code on
GitHub. Select the CSV file and click the Import button:

Figure 10.24 – Import the CSV file

5. After importing the file, double click on the test case and navigate to the parameters
section. There add some parameters that can be used for testing, similar to the
following screenshot:

Figure 10.25 – Parameter values

Running and analyzing a manual test plan 343

6. Click Save & Close in the top menu. Now that we have our test suite in place, we
can start testing. Click on the Execute tab in the top menu and click on the test
case, then Run, then Run with options:

Figure 10.26 – Run the test

7. Keep the default settings in the Run with options window and click Run:

Figure 10.27 – Run with options

344 Using Test Plans with Azure DevOps

8. The test runner is now displayed with all the steps:

Figure 10.28 – Test runner window

Running and analyzing a manual test plan 345

Now we can start the actual testing:

1. Open the Parts.Unlimited project in Visual Studio. We already cloned the
repository earlier in the book. If you need to clone the project again, refer to
Chapter 5, Running Quality Tests in a Build Pipeline.

2. Run the application by pressing F5 and wait until the Parts Unlimited website is
running. Now add the browser next to the test runner window and start testing:

Figure 10.29 – Start testing the web application

3. Follow the instructions according to the test runner. Each time you finish a step,
click on the pass test icon to the right of each step.

346 Using Test Plans with Azure DevOps

4. If you discover bugs or issues, you can add a comment to the step directly, or create
a separate bug at the top:

Figure 10.30 – Adding a comment or bug

Running and analyzing a manual test plan 347

5. To finish the test, click Save and close in the top menu of the test runner.

6. Now go back to Azure DevOps. In the left menu, click Test Plans > Runs.

7. In the list of recent runs, select the run that we just executed:

Figure 10.31 – Recent test runs

348 Using Test Plans with Azure DevOps

8. There, you can see all the details of the test and the outcome:

Figure 10.32 – Test results

In this demonstration, we have created a test suite and imported a test case. We then ran
the test and tested the Parts Unlimited application, and we looked at the results in Azure
DevOps.

This concludes this chapter.

Summary 349

Summary
In this chapter, we have covered Azure DevOps Test Plans. We looked at the different
features and capabilities and managed test plans, test suites, and test cases. Then we
imported a test case from a CSV file and tested the Parts Unlimited application. Then, we
covered exploratory testing in detail, and we used the Test & Feedback extension to report
a bug.

In the next chapter, we are going to focus on real-world CI/CD scenarios with Azure
DevOps.

Further reading
Check out the following links for more information about the topics that were covered in
this chapter:

• Exploratory and manual testing scenarios and capabilities: https://docs.
microsoft.com/en-us/azure/devops/test/overview?view=azure-
devops

• Creating manual test cases: https://docs.microsoft.com/en-us/azure/
devops/test/create-test-cases?view=azure-devops

• Providing feedback using the Test & Feedback extension: https://docs.
microsoft.com/en-us/azure/devops/test/provide-stakeholder-
feedback?view=azure-devops

• Exploratory testing with the Test & Feedback extension in Connected mode:
https://docs.microsoft.com/en-us/azure/devops/test/
connected-mode-exploratory-testing?view=azure-devops

https://docs.microsoft.com/en-us/azure/devops/test/overview?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/test/overview?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/test/overview?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/test/create-test-cases?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/test/create-test-cases?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/test/provide-stakeholder-feedback?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/test/provide-stakeholder-feedback?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/test/provide-stakeholder-feedback?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/test/connected-mode-exploratory-testing?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/test/connected-mode-exploratory-testing?view=azure-devops

11
Real-World CI/CD

Scenarios with Azure
DevOps

In this chapter, we'll show you some sample projects where the continuous integration
and continuous delivery (CI/CD) processes are handled by using Azure DevOps. We'll
be taking sample applications and setting up a CI/CD pipeline using Azure DevOps for
managing the software development, deployment, and upgrade life cycle.

We'll be covering the following topics in this chapter:

• Setting up a CI/CD pipeline for .NET-based applications

• Setting up a CI/CD pipeline for a container-based infrastructure

• Azure Architecture Center for DevOps

Technical requirements
To follow along with this chapter, you need to have an active Azure DevOps organization
and an Azure subscription.

352 Real-World CI/CD Scenarios with Azure DevOps

You can sign up for a test Azure DevOps organization at https://dev.azure.com.
You can get a trial for an Azure subscription at https://azure.microsoft.com/
en-in/free/ if you do not have one already.

The code for this chapter is available at https://github.com/PacktPublishing/
Learning-Azure-DevOps---B16392/tree/master/Chapter11.

Setting up a CI/CD pipeline for .NET-based
applications
A typical .NET-based application includes applications developed using Microsoft's .NET
Framework and uses a SQL database in the backend. You may have multiple layers of
applications, such as a frontend, backend (also known as the middle tier or API tier), and
data tier (SQL Server).

Azure Pipelines, which is part of Azure DevOps, provides a comprehensive solution to
build, deploy, and manage your .NET-based infrastructure deployments. In this section,
we'll look at the steps to configure CI/CD for a sample .NET-based application.

We will be creating two environments, named staging and production, for the application
and setup of a CI/CD pipeline.

Introduction to the sample application
We'll be using a simple ToDo application for this walkthrough. It's a web-based
application that uses a SQL database in the backend.

It is built using Microsoft ASP.NET, targeted for .NET Framework version 4.62. You can
access the source code here: https://github.com/Azure-Samples/dotnet-
sqldb-tutorial/tree/master/DotNetAppSqlDb.

It is recommended that you take a quick look at the application code to get familiar with it
before we start building the CI/CD pipeline.

https://dev.azure.com
https://azure.microsoft.com/en-in/free/
https://azure.microsoft.com/en-in/free/
https://github.com/PacktPublishing/Learning-Azure-DevOps---B16392/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Azure-DevOps---B16392/tree/master/Chapter11
https://github.com/Azure-Samples/dotnet-sqldb-tutorial/tree/master/DotNetAppSqlDb
https://github.com/Azure-Samples/dotnet-sqldb-tutorial/tree/master/DotNetAppSqlDb

Setting up a CI/CD pipeline for .NET-based applications 353

Preparing the pre-requisite Azure infrastructure
In this section, we'll create the required Azure infrastructure to host the application. We
will be creating the following resources:

1. Resource groups: The following resource groups will be created for hosting the
Azure resources for both environments:

 a) Contoso-ToDo-Staging

 b) Contoso-ToDo-Production

2. Application components: We'll be creating the following resources for both the
staging and production environments:

 a) Azure App Service to host the web application

 b) Azure SQL Database to host the SQL database

Creating a resource group in Azure
A resource group is a container that holds resources in the Azure cloud. Typically, a
resource group includes resources that you want to manage as a group or are maintained
in a similar life cycle. We'll be creating two resource groups: one for production and one
for staging. Let's create the resource groups in Azure:

1. Log in to the Azure portal, https://portal.azure.com, with your Azure
credentials.

2. Click on + Create a resource and search for resource group:

Figure 11.1 – Resource groups in the Azure portal

https://portal.azure.com

354 Real-World CI/CD Scenarios with Azure DevOps

3. Click Create on the resource group page.

4. Select your subscription and enter the resource group name as Contoso-ToDo-
Staging.

5. Choose a region close to your location:

Figure 11.2 – Resource group creation

6. Click on Review + Create and then Create to start the deployment.

7. Repeat the steps to create another resource group for the production environment
named Contoso-ToDo-Prod.

You've now created resource groups to host Azure resources.

Creating Azure App Service
Azure App Service is Microsoft Azure's Platform as a Service (PaaS) web hosting
service. You can host any web-based application built in almost any language using App
Service. Being a PaaS offering, App Service allows you to just push your code and get
your application live without worrying about the underlying hardware, OS, and platform
components.

Setting up a CI/CD pipeline for .NET-based applications 355

In this example, we'll be using Azure App Service to host the ToDo application:

1. In the Azure portal, click on + Create a resource and click on Web App:

Figure 11.3 – Azure Web App in the portal

2. On the Web App Creation page, please enter the following values:

 a) Subscription: Choose your Azure subscription.

 b) Resource Group: Select the staging resource group created in the previous
task.

 c) Name: Enter a unique name for your web application – for example,
contosotodostagingXX, where XX is your initials.

 d) Publish: Choose Code.

 e) Runtime stack: Choose ASP.NET V4.7.

356 Real-World CI/CD Scenarios with Azure DevOps

 f) Operating System: Choose Windows.

 g) Region: Choose a region close to your location:

Figure 11.4 – Azure App Service creation

Setting up a CI/CD pipeline for .NET-based applications 357

3. Under App Service Plan, choose the following:

 a) Windows Plan: Enter a new App Service plan name

 b) Sku and Size: You can choose any SKU; it is recommended using S0 or Basic
to avoid any significant Azure costs since this is for testing. In production, you'd use
a size that is suitable for your application resources demand:

Figure 11.5 – App Service SKU

4. Click Review + Create and then Create to start the deployment.

Once completed, you'll receive a notification with the status displayed as completed.

5. Repeat the steps in this task to create another Azure app service for the production
environment.

In this task, we created an Azure app service for hosting the ToDo web application.

358 Real-World CI/CD Scenarios with Azure DevOps

Creating an Azure SQL database
Our sample ToDo app is using Microsoft SQL Server to store all its application data. In
this task, we'll create a new Azure SQL database that will be used by the ToDo app to store
all the persistent data:

1. In the Azure portal, click on + Create a resource and select SQL Database:

Figure 11.6 – SQL Database in Azure

2. On the SQL Server Basics details page, provide the following values:

 a) Subscription: Select your Azure subscription.

 b) Resource group: Select the staging resource group created earlier.

 c) Database name: contosotodo-staging-db.

 d) Server: Create new:

 i) Server Name: Provide a unique SQL Server name, such as contosotodo-
staging-dbserver.

 ii) Provide a username and password of your choice.

 iii) Location: The Azure region used for deploying the web application.

Setting up a CI/CD pipeline for .NET-based applications 359

 e) Want to use SQL elastic pool?: No.

 f) Compute + storage: Change the SKU to S0 or Basic to keep the Azure costs
low during this test project. In reality, you'd need to choose the right compute and
storage combination as per your application requirements:

Figure 11.7 – Create SQL Database in Azure

360 Real-World CI/CD Scenarios with Azure DevOps

3. Click on Next: Networking >.

4. For the Networking configuration, select Public endpoint for Connectivity
method and choose Yes for Allow Azure services and resources to access this
server. Please note that this is just for the purpose of this test project deployment;
in production, it is advised to allow access to SQL Server from your specific
application servers only. Once selected, click on Review + create:

Figure 11.8 – Reviewing SQL database creation in Azure

5. Click Create to start the deployment. Once completed, you'll receive a notification
in the notification menu.

6. Navigate to the newly create Azure SQL database and copy the connection string.
This will be used in the upcoming sections.

7. Repeat the steps to create another Azure SQL database for production.

In this task, we've created Azure SQL databases for our application.

Setting up a CI/CD pipeline for .NET-based applications 361

Setting up an Azure DevOps project
Now that our Azure infrastructure is ready, we'll now set up an Azure DevOps
organization to build the CI/CD pipeline. We will be using Azure Repos as our source
control management system:

1. Log in to https://dev.azure.com using your Azure DevOps account.

2. Create a new project named Contoso ToDo in your DevOps tenant:

Figure 11.9 – Creating a DevOps project

3. We will start by importing the application code in Azure Repos. Click on Repos.

https://dev.azure.com

362 Real-World CI/CD Scenarios with Azure DevOps

4. Click on Import under Import a repository:

Figure 11.10 – Import a repository

5. For the repository URL, enter https://github.com/Azure-Samples/
dotnet-sqldb-tutorial/ and click Import:

https://github.com/Azure-Samples/dotnet-sqldb-tutorial/
https://github.com/Azure-Samples/dotnet-sqldb-tutorial/

Setting up a CI/CD pipeline for .NET-based applications 363

Figure 11.11 – Importing a repository from GitHub

Once the import is successful, we'll see that project files are now available in Azure Repos.
You can explore the code files to look under the hood of the ToDo application. The folder
named DotNetAppSQLDb contains the source file of the application:

Figure 11.12 – Files in the Azure repo

We will now set up a build pipeline for the application.

364 Real-World CI/CD Scenarios with Azure DevOps

Setting up CI for the application
Now that our application code is in Azure Repos, let's create a build pipeline that will
build the application package to be deployed to Azure App Service:

1. In Azure DevOps, browse to Pipelines and click on Create Pipeline:

Figure 11.13 – Creating a pipeline

2. Click on Use the classic editor to create the pipeline using the GUI (this is optional;
as described in previous chapters, you can choose to configure the pipeline using a
YAML file):

Figure 11.14 – Select the classic editor

Setting up a CI/CD pipeline for .NET-based applications 365

3. Select your Azure repo and master branch, then click Continue to move to the next
step:

Figure 11.15 – Selecting the repo

4. Select ASP.NET as the pipeline template:

Figure 11.16 – Selecting the pipeline template

366 Real-World CI/CD Scenarios with Azure DevOps

5. Review the pipeline configuration. For the purpose of this project, the default
configuration does the job. Once it's reviewed, click on Save & queue:

Figure 11.17 – Pipeline build tasks

6. In the Run Pipeline wizard, you can add a comment and click Save and run to
start execution.

Setting up a CI/CD pipeline for .NET-based applications 367

7. Once the job is in progress, you can review the status by click on the job name:

Figure 11.18 – Pipeline build status

368 Real-World CI/CD Scenarios with Azure DevOps

8. Now, let's enable CI on the pipeline to auto-start the build on commit to the master
branch. Edit the pipeline and browse to Triggers, and enable CI. You can choose to
filter by branch or change to a different branch if you are not using master as your
primary branch:

Figure 11.19 – Enable continuous integration

In this task, we created a build pipeline and performed a successful build of our sample
ToDo application. In the next task, we'll perform the deployments.

Setting up continuous delivery for the application
Now that our application is ready to be deployed, we'll create a release pipeline to deploy
the application in Azure. In this pipeline, we'll define which Azure resources to deploy the
application to and add additional deployment controls.

Setting up the service connection
Azure DevOps requires access to an Azure subscription in order to be able to deploy and
update Azure resources. Service connections in Azure DevOps allow you to connect your
Azure DevOps project to external services. Let's create a service connection for Azure
Pipelines:

1. Log in to Azure DevOps and browse to Project Settings | Service Connections.

2. Click on Create service connection.

3. In the connections list, select Azure Resource Manager:

Setting up a CI/CD pipeline for .NET-based applications 369

Figure 11.20 – ARM service connections

4. For the service connection authentication method, choose Service principal
(automatic):

Figure 11.21 – ARM service connections service principal

370 Real-World CI/CD Scenarios with Azure DevOps

5. Azure DevOps will now require you to authenticate to Azure. Please log in with an
account with at least subscription owner rights and global admin rights in the Azure
Active Directory (AD) tenant. You can choose to allow the service connection
scope to be limited to a resource group or allow the entire subscription. Select your
Azure subscription and give it a name:

Figure 11.22 – Creating a service connections service principal

This service connection is now ready to be used in Azure Pipelines.

Setting up a CI/CD pipeline for .NET-based applications 371

Creating a release pipeline
Release pipelines include all the steps and the workflow to deploy the application to
various environments, such as development, staging, QA, and production. Let's start with
creating a release pipeline for our ToDo app:

1. Log in to Azure DevOps and launch your Contoso ToDo project.

2. Browse to Pipeline | Releases.

3. Click on New pipeline:

Figure 11.23 – New release pipeline

372 Real-World CI/CD Scenarios with Azure DevOps

4. This will open a page to select a template. Since we're planning to deploy our ToDo
app to App Service, select Azure App Service deployment:

Figure 11.24 – The Azure App Service deployment task

5. Enter Staging Environment for Stage name. You can choose to give any other
meaningful name that best depicts the scenario in your environment:

Figure 11.25 – Staging stage

Setting up a CI/CD pipeline for .NET-based applications 373

6. You can now close the Stage blade. Your pipeline should look as follows:

Figure 11.26 – Pipeline snapshot

7. In order to deploy the application, first we need to get the application package from
the outputs of the build pipeline. Under Artifacts, click + Add:

Figure 11.27 – Artifact in the release pipeline

374 Real-World CI/CD Scenarios with Azure DevOps

8. Select Build as Source type and select the build pipeline created in the previous
task. You can choose to configure which version is to be deployed by default:

Figure 11.28 – Artifact source in the release pipeline

9. Click on the Continuous deployment trigger button and enable continuous
deployment. Enabling continuous deployment will trigger a release every time
there's a new build version available (typically after you run a build pipeline with
CI). If you enable Pull request trigger, a release will be created every time we have
a new build version, even with a pull request. This may be a useful scenario for pure
development pipelines:

Setting up a CI/CD pipeline for .NET-based applications 375

Figure 11.29 – Enabling continuous deployment

10. In Stages, click on 1 job, 1 task in the development environment:

Figure 11.30 – Pipeline stage

376 Real-World CI/CD Scenarios with Azure DevOps

11. Inside the tasks view, select your Azure subscription service connection and the app
service that you deployed earlier:

Figure 11.31 – App service deployment task

12. Click on Deploy Azure App Service and review the app service deployment
information.

13. Click on + to add another task to apply the SQL migration scripts for getting the
database ready. Search for SQL and select Azure SQL Database deployment.

14. In Azure SQL Task, change the following settings:

 a) Display Name: Apply database migration script.

 b) Select your Azure subscription and provide the database connection details
captured while creating the Azure SQL database.

 c) Deploy Type: Inline SQL script

Setting up a CI/CD pipeline for .NET-based applications 377

 d) Inline SQL Script: Provide the following script code. This will create the
required tables in the SQL database. Please note that this is a sample SQL script
to create the required schema (also available at https://github.com/
PacktPublishing/Learning-Azure-DevOps---B16392/tree/
master/Chapter11); in a production environment, you may choose to do so
using the SQL Server Data Tools project in Azure Pipelines. Please refer to this
documentation to learn more about doing Azure DevOps for SQL: https://
devblogs.microsoft.com/azure-sql/devops-for-azure-sql/:

/****** Object: Table [dbo].[__
MigrationHistory] Script
Date: 8/24/2020 12:35:05 PM ******/

SET ANSI_NULLS ON

SET QUOTED_IDENTIFIER ON

IF NOT EXISTS

 (SELECT [name]

 FROM sys.tables

 WHERE [name] = '__MigrationHistory'

)

BEGIN

 CREATE TABLE [dbo].[__MigrationHistory](

 [MigrationId] [nvarchar](150) NOT NULL,

 [ContextKey] [nvarchar](300) NOT NULL,

 [Model] [varbinary](max) NOT NULL,

 [ProductVersion] [nvarchar](32) NOT NULL,

 CONSTRAINT [PK_dbo.__MigrationHistory]
PRIMARY KEY CLUSTERED

 (

 [MigrationId] ASC,

 [ContextKey] ASC

)WITH (STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_
KEY = OFF) ON [PRIMARY]

) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

END

/****** Object: Table [dbo].[Todoes] Script

https://github.com/PacktPublishing/Learning-Azure-DevOps---B16392/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Azure-DevOps---B16392/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Azure-DevOps---B16392/tree/master/Chapter11
https://devblogs.microsoft.com/azure-sql/devops-for-azure-sql/
https://devblogs.microsoft.com/azure-sql/devops-for-azure-sql/

378 Real-World CI/CD Scenarios with Azure DevOps

Date: 8/24/2020 12:35:05 PM ******/

SET ANSI_NULLS ON

SET QUOTED_IDENTIFIER ON

IF NOT EXISTS

 (SELECT [name]

 FROM sys.tables

 WHERE [name] = 'Todoes'

)

BEGIN

 CREATE TABLE [dbo].[Todoes](

 [ID] [int] IDENTITY(1,1) NOT NULL,

 [Description] [nvarchar](max) NULL,

 [CreatedDate] [datetime] NOT NULL,

 CONSTRAINT [PK_dbo.Todoes] PRIMARY KEY CLUSTERED

 (

 [ID] ASC

)WITH (STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_
KEY = OFF) ON [PRIMARY]

) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

END

15. Click Save and + to add another task. We'll now need to add another task to update
the connection string of the database in the connection settings of Azure App
Service.

16. Search for Azure App Service Settings in the task's menu:

Setting up a CI/CD pipeline for .NET-based applications 379

Figure 11.32 – The Azure App Service Settings task

17. In the Azure App Service Settings task, select the Azure subscription and app
service connection details for the staging environment.

18. In Connection Settings, provide the database connection string in the following
format. Please update your database connection details before saving. Since this
is a test lab, we're storing the secure information directly in the pipeline task.
However, in a production environment, please use variables and parameters to store
any connection string or other information. Please refer to this documentation to
learn more about securely using variables and parameters in an Azure pipeline:
https://docs.microsoft.com/bs-cyrl-ba/azure/devops/
pipelines/security/inputs?view=azure-devops:

[

 {

 'name': 'MyDbConnection',

 'value': 'Server=tcp:contosotodostagingdb.database.
windows.NET,1433;Initial Catalog=ContoSoToDoStageDB;
Persist Security Info=False;User ID=azadmin;
Password=<YourPassword>;MultipleActiveResultSets=False;
Encrypt=True;TrustServerCertificate=False;
Connection Timeout=30;',

 'type': 'SQLAzure',

 'slotSetting': false

 }

]

https://docs.microsoft.com/bs-cyrl-ba/azure/devops/pipelines/security/inputs?view=azure-devops
https://docs.microsoft.com/bs-cyrl-ba/azure/devops/pipelines/security/inputs?view=azure-devops

380 Real-World CI/CD Scenarios with Azure DevOps

19. Once all the tasks are updated, click on Save. You can save the pipeline in the root
folder upon prompt. This should be the order of the tasks:

 a) Apply Database migration script

 b) Apply Azure App Service Settings

 c) Deploy Azure App Service:

Figure 11.33 – Saving the release pipeline

20. In the pipeline, click on + Add to add another stage for production. You can select
the same Azure App Service deployment, or you can also clone your development
environment stage. You can configure the production stage while targeting the
production app service and SQL database instances. Your pipeline should now look
as follows:

Figure 11.34 – Release pipeline

Setting up a CI/CD pipeline for .NET-based applications 381

21. Typically, you wouldn't want to auto-deploy to production. Let's modify the flow to
include a manual approval for production deployment. Click on Pre-Deployment
Conditions:

Figure 11.35 – Release pipeline trigger control

22. Enable the pre-deployment approval and select at least one user to approve before
deployment to production happens.

23. You can add an additional stage, such as test cases, performance benchmarks, and
so on, and prepare the overall flow. Click Save once you've completed reviewing the
pipeline.

The Azure release pipeline to deploy the application is now ready. Let's create a release and
see whether we can get our application up and running through CI/CD pipelines.

Creating a release
Let's test the release pipeline by creating a release manually:

1. In Azure DevOps, browse to Releases and click on Create release:

Figure 11.36 – Create release

382 Real-World CI/CD Scenarios with Azure DevOps

2. Review the release details and click Create:

Figure 11.37 – Reviewing release creation

3. Clicking Create will start a release execution; you can review the progress by
clicking on logs on the stage:

Figure 11.38 – Release status

Setting up a CI/CD pipeline for .NET-based applications 383

Once the development environment deployment has completed, you should try to launch
the app service and see whether the ToDo application is working well for you:

Figure 11.39 – The ToDo app

4. You can try to add to-do items and test the application. Once you're ready to
approve this for production deployment, click Approve to start the production
deployment:

Figure 11.40 – Approving the production deployment
You've now completed a release and your application is now ready to be used.

384 Real-World CI/CD Scenarios with Azure DevOps

Trying out end-to-end CI/CD flow
Now that you've completed setting up an end-to-end CI/CD pipeline, go ahead and try
out the following to experience the whole flow:

1. In Azure Repos, modify the view for the home page. Go to Repos |
DotNetAppSQLDB | Views | Todos | index.cshtml and modify the label from
Create new to Create New ToDo Item:

Figure 11.41 – Modifying the app code

Setting up a CI/CD pipeline for a container-based application 385

2. Commit the change in a new branch and follow through the pull request. You
should approve and complete the pull request.

This should start an automated build pipeline execution followed through
automated release execution.

In the end, you should have your application updated with the change without
having to do any manual steps except the approval task configured for production.

Congratulations, you've now completed the setup and testing of an end-to-end CI/
CD pipeline! In the next section, we'll set up a similar pipeline for a Kubernetes-based
application.

Setting up a CI/CD pipeline for a container-
based application
In this example, we'll take a container-based application and build an end-to-end CI/CD
pipeline. We'll take a Python and Redis-based sample application for the purpose of this
demonstration.

In this example, we'll be using various Azure resources in the overall solution architecture.
This includes the following:

• Azure DevOps: CI/CD pipeline

• Azure Kubernetes Service (AKS): For hosting the containers

• Azure Container Registry (ACR): Container image storage and management

Introduction to the sample app
In this section, we'll be using a sample application called Azure Voting App. It is a
standard multi-container-based application that uses the following components:

• The Azure Voting App backend: This will be running on Redis.

• The Azure Voting App frontend: Web application built with Python.

You can review the application code here: https://github.com/Azure-Samples/
azure-voting-app-redis.

https://github.com/Azure-Samples/azure-voting-app-redis
https://github.com/Azure-Samples/azure-voting-app-redis

386 Real-World CI/CD Scenarios with Azure DevOps

Setting up the required infrastructure
In order to be able to build the pipeline, first we need to set up the required infrastructure,
including the AKS cluster and Azure container registry. We will be creating separate
resources for the staging and production environments as a standard best practice;
however, it is possible to use a single environment for both the production and
development environments by using a combination of tags and a Kubernetes namespace.

In this section, we'll be using the Azure command-line interface (CLI) for all
infrastructure provisioning tasks.

Creating the Azure resource group
Let's start by creating an Azure resource group for organizing all the resources for your
development and production environments:

1. Log in to Azure Cloud Shell (https://shell.azure.com) with your Azure
credentials.

2. If this is your first time logging in to Azure Cloud Shell, it will prompt you to create
an Azure storage account. Select your subscription and click Create Storage.

3. Select Bash on the shell type selection.

4. Run the following command to list all your subscriptions:

az account list

5. If you need to select a specific subscription for provisioning resources, run the
following command:

az account set --subscription 'Your Subscription Name'

6. Create a resource named Contoso-Voting-Stage by running the following
command. You can choose to upload the location with a region of your choice:

az group create -l westus -n Contoso-Voting-Stage

7. Repeat the resource group creation command to create another resource group
named Contoso-Voting-Prod for the production environment.

You have now completed the required resource groups. In the next step, you'll create an
Azure Kubernetes cluster.

https://shell.azure.com

Setting up a CI/CD pipeline for a container-based application 387

Creating an Azure Kubernetes service
AKS is a managed Kubernetes offering from Microsoft Azure. There are two types of hosts
in Kubernetes clusters – master (aka the control plane) and nodes. In the world of AKS,
there's no master for end users. Microsoft creates and manages master nodes and hides
them away from end users. As a user, you only deploy AKS nodes (Kubernetes nodes) in
your subscription, whereas the configuration of Kubernetes and the joining of Microsoft-
managed Kubernetes masters happens in the background. With AKS, you only pay for the
nodes' infrastructure costs; masters are provided for free by Microsoft.

We will be using AKS to host our containers.

Let's start by creating an AKS cluster:

1. Log in to Cloud Shell with your Azure credentials.

2. Run the following command to create an AKS cluster with the default configuration
and latest version:

az aks create --resource-group Contoso-Voting-Stage
--name Contoso-Stage-AKS --node-count 1 --enable-addons
monitoring --generate-ssh-keys

Let's look at this command in detail:

 a) az aks create: The syntax for creating an AKS cluster.

 b) --resource-group & --name: The resource group's name and AKS
cluster name.

 c) --node-count: The number of AKS nodes you're creating.

 d) --enable-addons: This specifies add-ons, such as monitoring and HTTP
routing.

 e) --generate-ssh-keys: This is a flag that lets az cli create SSH keys to
be used for agent nodes.

3. It may take up to 10 minutes for the AKS cluster to be ready. You can review the
status by running the following command:

az aks list

4. Once your cluster is ready, you can get the Kubernetes authentication configuration
in your Cloud Shell session by running the following command:

az aks get-credentials --resource-group Contoso-Voting-
Stage --name Contoso-Stage-AKS

388 Real-World CI/CD Scenarios with Azure DevOps

5. You can try running kubectl commands now to interact with Kubernetes. Run
the following command to get a list of all the Kubernetes nodes:

kubectl get nodes

Your Azure Kubernetes cluster is now ready; please repeat the process to create another
AKS cluster for the production environment.

Creating an Azure container registry
ACR is a private Docker container registry that's hosted and managed by Microsoft Azure.
ACR is fully compatible with Docker and works in the same way, except that it's managed,
hosted, and secured by Microsoft. We will be using ACR to store our container images.

Let's create a container registry for the project:

1. Log in to Azure Cloud Shell and run the following command to create a container
registry:

az acr create --resource-group Contoso-Voting-Stage
--name ContosoStageACR --sku Basic

2. Once your container registry is ready, you can get the status and details of it by
running the following command:

az acr list

Integrating ACR with AKS
AKS needs to have permissions to access the container images from ACR in order to run
the application. Let's enable access for AKS to interact with our ACR.

Run the following command to integrate AKS with our ACR:

az aks update -n Contoso-Stage-AKS -g Contoso-Voting-Stage
--attach-acr ContosoStageACR

Now that our infrastructure is ready, we'll begin with setting up the code repository for
the application.

Setting up a CI/CD pipeline for a container-based application 389

Setting up Azure Repos for the voting application
In this section, we'll create a new Azure DevOps project and import the voting app source
code in Azure Repos:

1. Log in to Azure DevOps and create a new project named Contoso Voting App
or any other name of your choice.

2. Navigate to Azure Repos and click Import a Git repository. Please import the
Azure voting app repository from: https://github.com/Azure-Samples/
azure-voting-app-redis:

Figure 11.42 – Importing the repository

Now that our repo is ready, let's start with a build pipeline.

Setting up the CI pipeline
The build pipeline will be responsible for building the container image and pushing them
in ACR. Let's get started:

1. Log in to Azure DevOps and open Contoso Voting App Project.

2. Navigate to Pipeline and click Create Pipeline.

3. Click on Use the Classic Editor for creating the pipeline with the UI.

4. Select the source Azure repo that you created in the previous section as the source
for the pipeline.

https://github.com/Azure-Samples/azure-voting-app-redis
https://github.com/Azure-Samples/azure-voting-app-redis

390 Real-World CI/CD Scenarios with Azure DevOps

5. For the template, select Docker Container as the template type:

Figure 11.43 – Docker container pipeline template

6. In the Build an Image task configuration, provide the following values:

 a) Container Registry Type: Azure Container Registry.

 b) Select your Azure subscription from the dropdown and authorize it.

 c) Select ACR from the dropdown.

 d) Action: Build an image.

 e) Docker File: The root/azure-vote/Dockerfile repo.

Setting up a CI/CD pipeline for a container-based application 391

 f) Check Include Latest Tag:

Figure 11.44 – Push an image

7. In the Push an image task, select the Azure subscription and ACR again, with the
task being Push an image. Be sure to check Include Latest Tag.

8. Once you're done, review both tasks and click Save and Run to start the pipeline job
execution.

9. Review the job logs to see the detailed information about image building and
pushing to ACR.

392 Real-World CI/CD Scenarios with Azure DevOps

10. Upon completion, navigate to the Azure portal and open the container registry you
created earlier.

11. Navigate to Repositories; you should see a new image being created there. Let's look
at the image and find out the image name to update in our application deployment
configuration:

Figure 11.45 – Container image in ACR

12. Make a note of the image pull connection string. We'll need it in the next exercise:

Setting up a CI/CD pipeline for a container-based application 393

Figure 11.46 – Image syntax in ACR

13. Our pipeline is now ready and tested, so let's go back and enable CI in the pipeline
trigger configuration:

Figure 11.47 – Enabling CI

Now that our CI pipeline is ready, let's start with the deployment pipeline.

Setting up the CD pipeline
In this section, we'll set up the deployment pipeline, which will deploy the application
code to AKS and update when necessary. Azure Pipelines provides native integration with
Kubernetes clusters hosted on-premises and in the cloud.

394 Real-World CI/CD Scenarios with Azure DevOps

Updating the Kubernetes deployment manifest file
In the Kubernetes world, application deployment is managed through manifest files
written in JSON or YAML. The deployment file for this sample application is already
included in the Azure repo. You can review the deployment configuration by reviewing
the azure-vote-all-in-one-redis.yaml file in the Azure Repos root.

By default, the deployment manifest is configured to use the Microsoft-provided container
image. We'll need to update it to start using our own custom image. Let's get started:

1. Navigate to Azure Repos and open the azure-vote-all-in-one-redis.
yaml file.

2. Click on Edit at the top-right corner of the file editor.

3. Look for the following part of the deployment manifest. This redirects the container
engine to use a Microsoft-provided Docker image:

image: microsoft/azure-vote-front:v1

4. Replace the value with your own container registry and image name. It should look
like the one given as follows. You should specify the latest tag to ensure that the
newest image is always used:

 image: contosostageacr.azurecr.io/
contosovotingapp:latest

5. Commit the changes to save the deployment manifest file.

Your application manifest is now ready for deployment.

Setting up a CI/CD pipeline for a container-based application 395

Setting up the release pipeline
The release pipeline will be applying the deployment manifest in the Kubernetes cluster
and perform image update tasks. Let's build a pipeline to automate the deployment:

1. Log in to Azure DevOps | Pipelines | Releases.

2. Create a new release pipeline. Select the Deploy to a Kubernetes cluster template:

Figure 11.48 – The Deploy to a Kubernetes cluster template

3. Update the stage name to Development Environment.

4. Let's start with adding artifacts. Click on Add in artifacts.

396 Real-World CI/CD Scenarios with Azure DevOps

5. In Artifact, select the Azure repo and choose the repository we imported. Click
Add:

Figure 11.49 – Adding an artifact to a pipeline

Setting up a CI/CD pipeline for a container-based application 397

6. In the Tasks section, let's configure a task to perform the application deployment.
Configure the kubectl task as follows:

 a) Display Name: Deploy to Kubernetes.

 b) Kubernetes Service Connection: Create a new server connection and connect
to your AKS cluster created earlier:

Figure 11.50 – Kubernetes service connection

398 Real-World CI/CD Scenarios with Azure DevOps

 c) Command: Apply.

 d) Click on Choose configuration file to provide a path to your deployment
YAML file (azure-vote-all-in-one-redis.yaml). Browse to your default
directory and select the deployment YAML file. We can define additional options,
such as Kubernetes secrets and config maps, if required. Click Save after verifying
that all the configurations are valid:

Figure 11.51 – Selecting the deployment YAML

Setting up a CI/CD pipeline for a container-based application 399

 e) Review the task configurations and click Save to save the progress so far:

Figure 11.52 – Task configuration

7. Now, we'll add another step in the pipeline so that we can update the images in AKS
after deployment. This will ensure that, at every release, Kubernetes is pulling the
latest images. Click on the + sign to add another kubectl task to the pipeline.

400 Real-World CI/CD Scenarios with Azure DevOps

8. Configure the task so that it uses the same Kubernetes connection. Under
Command, keep set as the command and use image deployments/azure-
vote-front azure-vote-front=youracrname.azurecr.io/
contosovotingapp:latest as the argument. In a production deployment, you
may not want to use the latest tag in your pipeline and rather refer to the version
tag generated using the build pipeline. This will help you manage your deployments
with specific versions and roll back easily if you wish to.

9. Once you're ready, save the pipeline and create a release to test the deployment
pipeline.

10. Review the release logs to understand the deployment steps and flow.

11. Once it's completed successfully, go back to editing the pipeline again and enable
continuous deployment:

Figure 11.53 – Enabling continuous deployment
With that, our build and release configuration with full CI/CD automation is ready.
Let's look at the AKS cluster to ensure that our application has been deployed
properly and is accessible (with the release that we just did):

Setting up a CI/CD pipeline for a container-based application 401

12. Connect to your AKS cluster using the Azure shell.

13. Run kubectl get pods and kubectl get services:

Figure 11.54 – The kubectl results

14. Make a note of the public IP of the azure-vote-front application. You can try
launching the public IP to check that the application is working as expected:

Figure 11.55 – Voting app launched

Next, we will be simulating an end-to-end CI/CD experience for this application.

402 Real-World CI/CD Scenarios with Azure DevOps

Simulating an end-to-end CI/CD experience
In the previous sections, we set up a CI/CD pipeline. Let's try to play around with it and
experience the overall flow. Let's start by updating the title of the application from Azure
Voting App to Contoso Voting App:

1. Browse to Azure Repos | Files | azure-vote | azure-vote | config_file.cfg and click
Edit.

2. Change the value of Title from Azure Voting App to Contoso Voting App:

Figure 11.56 – Updating the app name

3. Commit the changes through a pull request process.

4. Once the pull request is completed, a build pipeline will trigger that will build the
Docker images and push to ACR.

5. Once the build pipeline is completed, it'll trigger the release pipeline to start another
release. In the end, you should see that your web application is updated with the
title.

This concludes setting up a CI/CD pipeline for container-based infrastructure hosted on
AKS.

Azure Architecture Center for DevOps
Azure Architecture Center is a centralized place to take guidance for architecting solutions
on Azure using established patterns and practices. There are several sample architectures
available around DevOps.

Azure Architecture Center for DevOps 403

You can access Azure Architecture Center here: https://docs.microsoft.com/
en-us/azure/architecture/.

Refer to the following links to learn more about planning the right architecture for
DevOps across various infrastructure and application scenarios:

• Azure DevOps: https://docs.microsoft.com/en-us/azure/
architecture/example-scenario/apps/devops-dotnet-webapp

• DevOps with containers: https://docs.microsoft.com/en-us/azure/
architecture/example-scenario/apps/devops-with-aks

• Microservices with AKS and Azure DevOps: https://docs.microsoft.
com/en-us/azure/architecture/solution-ideas/articles/
microservices-with-aks

• Secure DevOps for AKS: https://docs.microsoft.com/en-us/azure/
architecture/solution-ideas/articles/secure-devops-for-
kubernetes

• Azure DevOps CI/CD pipelines for chatbots: https://docs.microsoft.
com/en-us/azure/architecture/example-scenario/apps/devops-
cicd-chatbot

• CI/CD for Azure VMs: https://docs.microsoft.com/en-us/azure/
architecture/solution-ideas/articles/cicd-for-azure-vms

• CI/CD for Azure web apps: https://docs.microsoft.com/en-us/
azure/architecture/solution-ideas/articles/azure-devops-
continuous-integration-and-continuous-deployment-for-
azure-web-apps

• CI/CD for containers: https://docs.microsoft.com/en-us/azure/
architecture/solution-ideas/articles/cicd-for-containers

• Container CI/CD using Jenkins and Kubernetes on AKS: https://docs.
microsoft.com/en-us/azure/architecture/solution-ideas/
articles/container-cicd-using-jenkins-and-kubernetes-on-
azure-container-service

• DevSecOps in Azure: https://docs.microsoft.com/en-us/azure/
architecture/solution-ideas/articles/devsecops-in-azure

• DevTest deployment for testing IaaS solutions: https://docs.microsoft.
com/en-us/azure/architecture/solution-ideas/articles/
dev-test-iaas

https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/apps/devops-dotnet-webapp
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/apps/devops-dotnet-webapp
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/apps/devops-with-aks
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/apps/devops-with-aks
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/microservices-with-aks
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/microservices-with-aks
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/microservices-with-aks
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/secure-devops-for-kubernetes
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/secure-devops-for-kubernetes
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/secure-devops-for-kubernetes
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/apps/devops-cicd-chatbot
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/apps/devops-cicd-chatbot
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/apps/devops-cicd-chatbot
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/cicd-for-azure-vms
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/cicd-for-azure-vms
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/cicd-for-containers
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/cicd-for-containers
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/container-cicd-using-jenkins-and-kubernetes-on-azure-container-service
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/container-cicd-using-jenkins-and-kubernetes-on-azure-container-service
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/container-cicd-using-jenkins-and-kubernetes-on-azure-container-service
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/container-cicd-using-jenkins-and-kubernetes-on-azure-container-service
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/devsecops-in-azure
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/devsecops-in-azure
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/dev-test-iaas
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/dev-test-iaas
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/dev-test-iaas

404 Real-World CI/CD Scenarios with Azure DevOps

• DevTest deployment for testing PaaS solutions: https://docs.microsoft.
com/en-us/azure/architecture/solution-ideas/articles/
dev-test-paas

• DevTest deployment for testing microservice solutions: https://docs.
microsoft.com/en-us/azure/architecture/solution-ideas/
articles/dev-test-microservice

• DevTest Image Factory: https://docs.microsoft.com/en-us/azure/
architecture/solution-ideas/articles/dev-test-image-
factory

• Immutable infrastructure CI/CD using Jenkins and Terraform on Azure
virtual architecture overview: https://docs.microsoft.com/en-us/
azure/architecture/solution-ideas/articles/immutable-
infrastructure-cicd-using-jenkins-and-terraform-on-azure-
virtual-architecture-overview

• DevOps in a hybrid environment: https://docs.microsoft.com/en-us/
azure/architecture/solution-ideas/articles/java-cicd-
using-jenkins-and-azure-web-apps

• Java CI/CD using Jenkins and Azure web apps: https://docs.microsoft.
com/en-us/azure/architecture/solution-ideas/articles/java-
cicd-using-jenkins-and-azure-web-apps

• Run a Jenkins server on Azure: https://docs.microsoft.com/en-us/
azure/architecture/example-scenario/apps/jenkins

• SharePoint Farm for development testing: https://docs.microsoft.
com/en-us/azure/architecture/solution-ideas/articles/
sharepoint-farm-devtest

• Sharing location in real time using low-cost serverless Azure services: https://
docs.microsoft.com/en-us/azure/architecture/example-
scenario/signalr/

https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/dev-test-paas
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/dev-test-paas
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/dev-test-paas
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/dev-test-microservice
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/dev-test-microservice
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/dev-test-microservice
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/dev-test-image-factory
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/dev-test-image-factory
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/dev-test-image-factory
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/immutable-infrastructure-cicd-using-jenkins-and-terraform-on-azure-virtual-architecture-overview
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/immutable-infrastructure-cicd-using-jenkins-and-terraform-on-azure-virtual-architecture-overview
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/immutable-infrastructure-cicd-using-jenkins-and-terraform-on-azure-virtual-architecture-overview
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/immutable-infrastructure-cicd-using-jenkins-and-terraform-on-azure-virtual-architecture-overview
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/java-cicd-using-jenkins-and-azure-web-apps
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/java-cicd-using-jenkins-and-azure-web-apps
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/java-cicd-using-jenkins-and-azure-web-apps
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/java-cicd-using-jenkins-and-azure-web-apps
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/java-cicd-using-jenkins-and-azure-web-apps
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/java-cicd-using-jenkins-and-azure-web-apps
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/apps/jenkins
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/apps/jenkins
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/sharepoint-farm-devtest
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/sharepoint-farm-devtest
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/sharepoint-farm-devtest
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/signalr/
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/signalr/
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/signalr/

Summary 405

Summary
In this chapter, we looked at a .NET and SQL-based application and set up a CI/CD
pipeline for it using Azure DevOps. We looked at how you manage your production and
staging environments through approval workflows.

Similarly, we also looked at a container-based application and did a walkthrough of setting
up an end-to-end CI/CD pipeline for the application using ACR and AKS.

In the end, we talked about Azure Architecture Center, which can be referred to while
planning your DevOps architecture.

This was the final chapter, and we hope you have enjoyed reading this book!

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learn Azure Administration

Kamil Mrzygłód

ISBN: 978-1-83855-145-2

• Explore different Azure services and understand the correlation between them

• Secure and integrate different Azure components

• Work with a variety of identity and access management (IAM) models

• Find out how to set up monitoring and logging solutions

• Build a complete skill set of Azure administration activities with Azure DevOps

• Discover efficient scaling patterns for small and large workloads

https://www.packtpub.com/product/learn-azure-administration/9781838551452

408 Other Books You May Enjoy

Learn Azure Sentinel

Richard Diver, Gary Bushey

ISBN: 978-1-83898-092-4

• Understand how to design and build a security operations center

• Discover the key components of a cloud security architecture

• Manage and investigate Azure Sentinel incidents

• Use playbooks to automate incident responses

• Understand how to set up Azure Monitor Log Analytics and Azure Sentinel

• Ingest data into Azure Sentinel from the cloud and on-premises devices

• Perform threat hunting in Azure Sentinel

https://www.packtpub.com/product/learn-azure-sentinel/9781838980924

Leave a review - let other readers know what you think 409

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Index

Symbols
.NET Core application

creating 185-189

A
access token

setting up, for agent
communication 202-204

Active Directory (AD) 370
agent 108
agent pool

about 193
setting up, in Azure DevOps 200, 202

AKS
ACR, integrating with 388

AML schema
reference link 142

approvals
creating 272-275
used, for managing deployments 272

ARM Outputs
reference link 19

artifact
about 108, 259
defining, for release pipeline 259-261

artifact feed
creating, with Azure Artifacts 231, 232
package, using in Visual Studio 241-245

artifact store 254
automatic testing

benefits 166, 167
Azure

resource group, creating in 353, 354
Azure App Service

creating 354, 355, 357
Azure Architecture Center

for DevOps 402-404
reference link 403

Azure Artifacts
about 16, 230, 231
artifact feed, creating 231, 232

Azure Boards
about 12
integrating, with GitHub 307
setting up, with GitHub

integration 308, 310, 311
Status badge, adding 311-313
work items, linking to Github

objects 313, 315-317
work items, updating from

Github 317-320

412 Index

Azure Container Instances (ACI)
about 217
build agents, creating 162, 163
using, as agents 217, 218

Azure Container Registry (ACR)
about 385
creating 388
integrating, with AKS 388

Azure DevOps
about 64
organization, creating 27-29
overview 292, 293
pipeline, creating 107
project activities, creating 31
project activities, managing 31
project, creating 29-31
URL 231
used, for creating build pipeline 121
used, for creating release

pipeline 256-263
used, for handling source control 66, 67
used, for handling source control

management (SCM) 64
YAML release pipeline,

using 281, 282, 285
Azure DevOps extensions

ARM Outputs 19
Team Project Health 19

Azure DevOps key concepts
about 8
Agile development method 10
Azure Monitor, using 12
Configuration Management 12
continuous integration and

continuous delivery (CI/CD) 10
deliver phase 9
development phase 9
Infrastructure as Code (IaC) 11

operate phase 6, 9
planning phase 9
version control system 11

Azure DevOps organization
reference link 208

Azure DevOps, processes
Agile 25
basic 24
CMMI 26
Scrum 26

Azure DevOps project
continuous delivery, setting up

for application 364-368
end-to-end CI/CD flow,

setting up 384, 385
release, creating 381-383
release pipeline, creating 371-381
service connection, setting up 368, 370
setting up 361-363

Azure DevOps, project activities
backlogs 39-43
boards 44, 45
queries 48-50
sprints 45, 46, 48
work items 31

Azure DevOps, SCM types
Git 64
Team Foundation Version

Control (TFVC) 64
Azure DevOps services

Azure Artifacts 16
Azure Boards 12
Azure Pipelines 14
Azure Repos 13
Azure Test Plans 15
discovering 12
extensions, downloading from Visual

Studio Marketplace 17, 18

Index 413

Azure DevOps Test plans 324
Azure infrastructure

pre-requisite, preparing 353
Azure Kubernetes service

creating 387
Azure Kubernetes Service (AKS) 385
Azure pipeline

executing 212-215
updating, for self-hosted agent 210

Azure pipeline agent
Linux containers, setting up 217
overview 193
used, for planning selfhosted agents 195
used, for setting up selfhosted

agents 195
Windows containers, setting up 215

Azure pipeline agent image
reference link 217

Azure pipeline agent types
about 194
Microsoft-hosted agents 194
self-hosted agents 194, 195

Azure Pipeline, building with
GitHub repositories

about 151-158
build agents, creating on ACI 162, 163
jobs, executing in parallel in

Azure Pipeline 159-162
Azure Pipelines

building, with GitHub
repositories 151-158

build pipeline 107
container jobs, using 163, 164
continuous integration, testing 301-304
creating, Classic interface used 107
creating, YAML used 107
fan-out scenario 108, 109

features 106
integrating, with GitHub 293
jobs, running in parallel 159-162
overview 106, 108, 109
pipeline, creating 109
release pipeline 107
schema 107
setting up, with GitHub

integration 293-301
Status badge, adding 304-307
using 107

Azure Pipelines agent container
executing 216

Azure Pipelines agents
installing 205-210

Azure Pipelines server
reference link 194

Azure Repos
about 13
setting up, for voting application 389

Azure resource group
creating 386

Azure SQL database
creating 358, 360

Azure Test Plans 15
Azure VM scale set

as Azure pipeline agent 219
creating 220-223
planning 219
used, for setting up Azure

pipeline agent 223-225
Azure Voting App 385

414 Index

B
branches policies

additional services, approval 87
build validation 86
code reviewers 88
comment resolution, checking 84
linked work items, checking 84
merge types, limiting 85
number of reviewers, specifying 84
protecting 82, 83

branching strategies
exploring 61
GitHub Flow 61, 62
GitLab Flow 62, 63

branch strategies
Git Flow 63, 64

build agents
about 109
Microsoft-hosted agents 110
self-hosted agents 110

build pipeline
creating 171-179, 234-237
creating, with Azure DevOps 121
package, publishing to feed 238
retention policy 142, 143
unit tests, running 168
used, for producing package 232

build pipeline, creating with
Azure DevOps

about 121-123
defining, with classic editor 124-135
YAML pipeline, creating 135-141

Build Source 285

C
Capability Maturity Model

Integration (CMMI) 26
CD pipeline

Kubernetes deployment manifest
file, updating 394

release pipeline, setting up 395-401
setting up 393
setting up, for container-

based application 385
setting up, for NET-based

applications 352
CI/CD pipeline implementation

benefits 106
Build stage 105
Commit stage 105
Production Deployment stage 105
Test stage 105

CI/CD pipeline, setting up for
container-based application

ACR, integrating with AKS 388
Azure container registry, creating 388
Azure Kubernetes service, creating 387
Azure resource group, creating 386
required infrastructure, setting up 386
sample app 385

CI/CD process
implementing 104-106

CI pipeline
setting up 389-393
setting up, for container-

based application 385
setting up, for NET-based

application 352
Cobertura

reference link 179
code coverage testing

Index 415

about 179
performing 179, 181
command-line interface (CLI) 386

container-based application
CI/CD pipeline, setting up for 385

container image
building 216

container jobs
using, in Azure Pipelines 163, 164

continuous delivery (CD) 104, 254
continuous deployment (CD)

about 254
used, for configuring release

pipeline triggers 265-267
continuous deployment process 105
continuous integration and continuous

delivery (CI/CD) 351
continuous integration (CI) 104
Contoso Voting App Project 389
Copy files task

URL 143
cross-repository policies 88, 90

D
Deploy in Dev 285
Deploy in Production 285
Deploy in QA 285
deployment group

reference link 205
using 279, 281

DEV 268
development, test, acceptance, and

production (DTAP) 14
development testing 167
DevOps

about 4, 5
advantages 6

Azure Architecture Center for 402-404
DevOps principles

about 6
automating 7
continuous improvement 7
cross-functional autonomous teams 7
customer-centric action 6
end-to-end responsibility 7
mindset, creating 6

DevOps scenarios
about 18
project, creating 19, 20

Docker containers
using, as self-hosted agent 215

E
end-to-end CI/CD experience

simulating 402
end-to-end CI/CD flow

setting up 384, 385
environment variables 218
exploratory testing

about 324, 325
Test & Feedback extension,

installing 325-330
Test & Feedback extension,

using 325-330

F
fan-in scenario 109
fan-out scenario 108, 109
Feature Flags

about 184
used, for testing in production 185

feed
package, publishing from

416 Index

build pipeline 238
permissions, setting 238, 239

feedback items, in Azure DevOps
reference link 330

G
gates

about 275
used, for managing deployments 272
using, to check conditions 275-279

Git Flow 63, 64
GitHub

used, for integrating Azure Boards 307
used, for integrating Azure Pipelines 293

GitHub Actions
overview 320
reference link 321

GitHub Flow 62
GitHub integration

overview 292, 293
used, for setting up Azure

Boards 308-311
used, for setting up Azure

Pipelines 293-301
GitHub repositories

used, for building Azure
Pipeline 151-158

GitLab Flow
about 62, 63
master 63
production 63
staging 63

I
Infrastructure as Code (IaC) 11
Internet Explorer security configuration

reference link 206

J
JaCoCo

reference link 179

K
Kubernetes deployment manifest file

updating 394

L
Linux-based hosted agent

reference link 210
Linux containers

setting up, as Azure pipeline agent 217

M
macOS-based agents

reference link 210
manual test plan

analyzing 341-348
executing 341-348

master 58
merge types

basic merge 85
rebase and fast-forward 85
rebase, with merge commit 85
squash merge 85

Microsoft-hosted agents
about 110, 111, 194

Index 417

using 111
using, scenarios 118

multi-stage pipeline
creating, with YAML 144-150
defining 144

multi-stage release pipeline
creating 268-271

N
NET-based applications

CI/CD pipeline, setting up for 352

O
original equipment manufacturers

(OEMs) 196

P
package

build pipeline, creating 234-237
producing, with build pipeline 232
publishing 239-241
publishing, to feed from

build pipeline 238
sample project, adding to Parts

Unlimited repository 233, 234
using, in Visual Studio from

Artifacts feed 241-245
package vulnerabilities

scanning, with WhiteSource Bolt 246-50
Parts Unlimited example

reference link 21
Personal access token (PAT) 208
planned manual testing 330-332
processes and process templates 24

Production 268
pull request

about 90
creating, after code commit 93
creating, from Azure DevOps

pull request page 92
creating, from Visual Studio 94
creating, from Visual Studio Code 94
creating, from work item 92
handling 95-99
working with 90, 91

Q
QA 268
query-based 338

R
release pipeline

about 254, 256
creating, with Azure DevOps 256-263
overview 254-256
setting up 395-401
triggers, configuring for continuous

deployment 265-267
used, for defining artifacts 259-261
variables, using 264

requirement-based 338

S
sample project

adding, to Parts Unlimited
repository 233, 234

SCM, key concepts
branches 58
cloning 58

418 Index

commit 58
pulling 58
pushing 58
repositories 58
snapshots 58

search queries
reference link 50

self-hosted agent
about 110-195
build agent, setting up 200
creating 112
Docker containers, using 215
factors 195
OS/image, selecting for agent VM 196
OS versions 196, 197
planning, with Azure Pipeline agent 195
preparing, for Parts Unlimited

project build 211
pre-requisite software 198
pre-requisites, for installing

Azure Pipeline agent 196
setting up, with Azure

Pipeline agent 195
used, for updating Azure pipeline 210
VM, creating in Azure 198, 200

self-hosted Windows agent
creating 112-117
using, scenarios 118

Software Development Life
Cycle (SLDC) 4

source code
downloading 168-170

source control management (SCM)
about 56-60
branches policies, protecting 82, 83
branches, working with 74-82
commits, working with 74-82
cross-repository policies 88-90

GitHub repository, importing
into Azure DevOps 72, 73

handling, with Azure DevOps 64-67
pushes, working with 74-82
remote repository, cloning 68-71

source control system 11
static 338

T
tags

using 99, 100
Tailwind Traders

reference link 21
task 108
Team Foundation Server

Control (TFSC) 13
Team Foundation Version

Control (TFVS) 11
Team Project Health

reference link 19
Test cases

about 332, 333
managing 333-341

test-driven development (TDD) 167
Test plans

about 332
managing 333-341

test results
assigning, to work items 182-184

Test suites
about 332
managing 333-341

ToDo application 352
trigger 108

Index 419

U
unit testing 167
unit tests

running, in build pipeline 168
upstream sources 230

V
Visual Studio

package, using from Artifacts
feed 241-245

Visual Studio Marketplace
extensions, downloading 17, 18

VM creating, in Azure
reference link 200

voting application
Azure Repos, setting up for 389

W
WhiteSource Bolt

URL 246
used, for scanning package

vulnerabilities 246-250
Windows container

Azure Pipeline agent container,
executing 216

container image, building 215, 216
reference link 217
setting up, as Azure pipeline agent 215

work items
creating 32-38
reference link 38
test results, assigning to 182-184

Y
YAML Ain't Markup Language (YAML)

collections 119
complex object, defining 120, 121
dictionaries 120
document structure 120
lists 119
overview 118, 119
scalars 119
URL 119

YAML release pipeline
using, with Azure DevOps 281, 282, 285

	Cover
	Copyright
	About PACKT
	Contributors
	Table of Contents
	Preface
	Section 1:
DevOps Principles and Azure DevOps Project Management
	Chapter 1: Azure DevOps Overview
	Introducing DevOps
	Understanding DevOps principles
	Principle 1 – Customer-centric action
	Principle 2 – Create with the end in mind
	Principle 3 – End-to-end responsibility
	Principle 4 – Cross-functional autonomous teams
	Principle 5 – Continuous improvement
	Principle 6 – Automate everything

	Introducing Azure DevOps key concepts
	Plan
	Develop
	Deliver
	Operate
	Continuous integration and continuous delivery
(CI/CD)
	Agile development support
	Version control
	Infrastructure as Code
	Configuration Management
	Monitoring

	Discovering Azure DevOps services
	Azure Boards
	Azure Repos
	Azure Pipelines
	Azure Test Plans
	Azure Artifacts
	Extension Marketplace

	Introducing the scenarios
	Creating the starter project

	Summary
	Further reading

	 Chapter 2: Managing
Projects with Azure DevOps Boards
	Technical requirements
	Understanding processes and process templates
	Creating an organization
	Creating a project
	Creating and managing project activities
	Work Items
	Backlogs
	Boards
	Sprints
	Queries

	Summary
	Further reading

	Section 2:
Source Code
and Builds
	Chapter 3: Source Control Management with Azure DevOps
	Technical requirements
	Understanding SCM
	Exploring branching strategies
	GitHub Flow
	GitLab Flow
	Git Flow

	Handling source control with Azure DevOps
	Cloning a remote repository
	Importing a GitHub repository into Azure DevOps
	Working with commits, pushes, and branches
	Protecting branches with policies
	Cross-repo policies

	Working with pull requests
	Creating a pull request from the Azure DevOps pull request page
	Creating a pull request from a work item
	Creating a pull request after pushing a branch
	Creating a pull request from Visual Studio Code or Visual Studio

	Handling a pull request
	Tagging a release
	Summary

	Chapter 4: Understanding Azure DevOps Pipelines
	Technical requirements
	Implementing a CI/CD process
	Overview of Azure Pipelines
	Understanding build agents
	Microsoft-hosted agents
	Self-hosted agents
	When to use a Microsoft-hosted or a self-hosted agent

	Overview of the YAML language
	Scalars
	Collections and lists
	Dictionaries
	Document structure
	Complex object definition

	Creating a build pipeline with Azure DevOps
	Pipeline definition with the classic editor
	YAML pipeline definition

	Retention of builds
	Multi-stage pipeline
	Building a pipeline with GitHub repositories
	Executing jobs in parallel in an Azure Pipeline
	Agents on Azure Container Instances

	Using container jobs in Azure Pipelines
	Summary

	Chapter 5: Running
Quality Tests in
a Build Pipeline
	Technical requirements
	Benefits of automatic testing
	Introduction to unit testing
	Running unit tests in a build pipeline
	Downloading the source code
	Creating the pipeline

	Introduction to code coverage testing
	Performing code coverage testing
	Assigning test results to work items
	Introduction to Feature Flags
	Using Feature Flags to test in production
	Creating a new .NET Core application

	Summary
	Further reading

	Chapter 6: Hosting Your Own Azure Pipeline Agent
	Technical requirements
	Azure pipeline agent overview
	Understanding the types of agents in Azure Pipelines
	Microsoft-hosted agents
	Self-hosted agents

	Planning and setting up your self-hosted Azure pipeline agent
	Choosing the right OS/image for the agent VM
	OS support and pre-requisites for installing an Azure Pipelines agent
	Creating a VM in Azure for your project
	Setting up the build agent

	Updating your Azure pipeline to use self-hosted agents
	Preparing your self-hosted agent to build the Parts Unlimited project
	Running the Azure pipeline

	Using containers as self-hosted agents
	Setting up Windows containers as Azure pipeline agents
	Setting up Linux containers as Azure Pipelines agents
	Using Azure Container Instances as agents
	Environment variables
	Planning for scale
	Creating an Azure VM scale set
	Setting up Azure pipeline agents with VM scale set

	Summary

	Section 3:
Artifacts and Deployments
	Chapter 7: Using Artifacts with Azure DevOps
	Technical requirements
	Introducing Azure Artifacts
	Creating an artifact feed with Azure Artifacts
	Producing the package using a build pipeline
	Adding the sample project to the PartsUnlimited repository
	Creating the build pipeline

	Publishing the package to the feed from a build pipeline
	Setting the required permissions on the feed

	Consuming the package in Visual Studio from the Artifacts feed
	Scanning for package vulnerabilities using WhiteSource Bolt
	Summary
	Further reading

	Chapter 8: Deploying Applications with Azure DevOps
	Technical requirements
	An overview of release pipelines
	Creating a release pipeline with Azure DevOps
	Creating the Azure DevOps release
	Configuring the release pipeline triggers for continuous deployment

	Creating a multi-stage release pipeline
	Using approvals and gates for managing deployments
	Creating approvals
	Using gates to check conditions
	Using deployment groups

	YAML release pipelines with Azure DevOps
	Summary

	Section 4:
Advanced Features of Azure DevOps
	Chapter 9: Integrating Azure DevOps with GitHub
	Technical requirements
	An overview of Azure DevOps and GitHub integration
	Integrating Azure Pipelines with GitHub
	Setting up Azure Pipelines and GitHub integration
	Testing continuous integration
	Adding a build Status badge

	Integrating Azure Boards with GitHub
	Setting up Azure Boards and GitHub integration
	Adding an Azure Boards Status badge
	Linking Azure Boards work items to GitHub objects
	Updating work items from GitHub

	Overview of GitHub Actions
	Summary

	Chapter 10: Using Test Plans with Azure DevOps
	Technical requirements
	Introduction to Azure Test Plans
	Exploratory testing
	Installing and using the Test & Feedback extension

	Planned manual testing
	Test plans, test suites, and test cases
	Managing test plans, test suites, and test cases

	Running and analyzing a manual test plan
	Summary
	Further reading

	Chapter 11: Real-World CI/CD Scenarios with Azure DevOps
	Technical requirements
	Setting up a CI/CD pipeline for .NET-based applications
	Introduction to the sample application
	Preparing the pre-requisite Azure infrastructure
	Setting up an Azure DevOps project

	Setting up a CI/CD pipeline for a container-based application
	Introduction to the sample app
	Setting up the required infrastructure
	Setting up Azure Repos for the voting application
	Setting up the CI pipeline
	Setting up the CD pipeline
	Simulating an end-to-end CI/CD experience

	Azure Architecture Center for DevOps
	Summary

	Other Books You May Enjoy
	Index

